
Statistical Techniques in Robotics (16-831, F09) Lecture #22 (Nov 5, 2009)

Kernel Machines / Functional Gradient Descent

Lecturer: Drew Bagnell Scribe: Tomas Simon1

1 Motivation

We have seen how to use online convex programming to learn linear functions by optimizing costs
of the following form:

|yt −wTxt|︸ ︷︷ ︸
loss

+ λwTw2︸ ︷︷ ︸
regularization/prior

We want generalize this to learn over a space of more general functions f : Rn → R. The high-level
idea is to learn non-linear models using the same gradient-based approach used to learn linear
models.

|yt − f(xt)|+ λ||f ||2

Up till now we have only considered functions of the form f(x) = wTx, but we will now extend
this to a more general space of functions, the Reproducing Kernel Hilbert Space.

2 Reproducing Kernel Hilbert Space

The Reproducing Kernel Hilbert Space (RKHS), denoted by Hk, is the space of functions f(·) that
can be written as

∑
i αik(xi, ·), where k(xi,xj) satisfies certain properties described below.

To be able to manipulate objects in this space of functions, we will look at some key properties:

The inner product of f, g ∈ Hk is defined as

〈f, g〉 4=
∑
i

∑
j

αiβjk(xi,xj) = α>Kβ

where f(·) =
∑

i αik(xi, ·), g(·) =
∑

j βjk(xj , ·), α and β are vectors comprising, respectively, αi
and βi components, and K is n by m (where n is the number of xi in f , and m those in g) with
Kij = k(xi,xj).

Note that this will satisfy linearity (in both arguments):

• 〈λf, g〉 = λ〈f, g〉

• 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉
1Based on the scribe work of Daniel Munoz and Bryan Low
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With this inner product, the norm will be: ||f ||2 = 〈f, f〉 = α>Kα.

For these definitions to work, we can see that the kernel k(·, ·) will have to satisfy the following
conditions:

• K is symmetric (Kij = Kji), so k(xi,xj) = k(xj ,xi)

• K is positive-definite (∀x ∈ Rn : x 6= 0,xTKx > 0)

An example of a valid kernel for x ∈ Rn is the inner product: k(xi,xj) = xTi xj . Intuitively, the
kernel measures the correlation between xi and xj .

A very commonly used kernel is the RBF or Radial Basis Function kernel, which takes the form

k(xi,xj) = e
− 1
γ
||xi−xj ||2 . With this kernel in mind, a function can be considered as a weighted (by

αi) composition of bumps (the kernels) centered at the Q locations xi:

f(·) =

Q∑
i=1

αiK(xi, ·),

See figure 4 for an illustration.

Note that as long as you can define a valid kernel k(xi,xj), the samples x themselves can in
principle be any object, eg. text strings. The kernel function might in this case measure the
similarity between samples using some sort of edit distance. Each type of data will require kernel
functions that are appropriate for that particular data.

3 Loss Minimization

Let us consider again our cost function defined over all functions f in our RKHS (but using the
hinge loss this time):

L[f ] = max(0, 1− ytf(xt)) + λ〈f, f〉 (1)

The purpose of 〈f, f〉 is to penalize the complexity of the solution f . Here it acts like the log of
a gaussian prior over functions. Intuitively, the probability can be thought of as being distributed
according to P (f) = 1

Z e
− 1

2
〈f,f〉 (in practice this expression doesn’t work because Z becomes infinite).

We want to find the best function f in our RKHS so as to minimize this cost, and we will do this
by moving in the direction of the negative gradient: f − α∇L. To do this, we will first have to be
able to express the gradient of a function of functions (ie. a functional such as L[f ]).

3.1 Functional gradient

A gradient can be thought of as:

• Vector of partial derivatives

• Direction of steepest ascent
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• Linear approximation of the function (or functional), ie. f(x0+ε) = f(x0)+ε·∇f(x0)︸ ︷︷ ︸
gradient

+O(ε2).

We will use the third definition. A functional F : f → R is a function of functions f ∈ HK .
Examples:

• F [f ] = ||f ||2

• F [f ] = (f(x)− y)2

• F [f ] = λ
2 ||f ||

2 +
∑

i(f(xi)− yi)2

A functional gradient ∇F [f ] is defined implictly as the linear term of the change in a function due
to a small perturbation ε in its input: F [f + εg] = F [f ] + ε〈∇F [f ], g〉+O(ε2)

• Example: ∇F [f ] = ∇||f ||2 = 2f

F [f + εg] = 〈f + εg, f + εg〉
= ||f ||+ 2〈f, εg〉+ ε2||g||
= ||f ||+ ε〈2f, g〉+O(ε2)

3.2 More functional gradients

• The evaluation functional evaluates f at the specified x: Fx[f ] = f(x)

– Gradient is ∇Fx = K(x, ·)

Fx[f + εg] = f(x) + εg(x) + 0

= f(x) + ε〈K(x, ·), g〉+ 0

= Fx[f ] + ε〈∇Fx, g〉+O(ε2)

– It is called a linear functional due to the lack of a multiplier on perturbation ε.

• Consider differentiable functions C : R → R that are functions of functionals G, C(G[f ]).
Our cost function L[f ] from before was such a function, these are precisely the functions that
we are interested in minimizing.

• The derivative of these functions follows the chain rule: ∇C(G[f ]) = C ′(G[f ])∇G[f ]

– Example: If C = (||f ||2)3, then ∇C = 3(||f ||2)2(2f)

4 Functional gradient descent

• Consider the regularized least squares loss function L[f ]

L[f ] = (f(xi)− yi)2 + λ||f ||2

L[f ] = (Fxi [f ]− yi)2 + λ||f ||2

∇L[f ] = 2(f(xi)− yi)K(xi, ·) + 2λf
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• Update rule:

f t+1 ← f t − ηt∇L
← f t − ηt(2(f t(xi)− yi)K(xi, ·) + 2λf t)

← f t(1− 2ηtλ)− ηt(2(f t(xi)− yi)K(xi, ·))

• Need to perform O(T ) work at each time step

• Example: Figure 4 shows an update over 3 points {(x1,+), (x2,−), (x3,+)}. The individual
kernels centered at the points are independently drawn with colored lines. After 3 updates,
the function f looks like the solid black line.

Figure 1: Illustration of function after 3 updates

• Representer Theorem (informally): Given a loss function and regularizer objective with
many data points {xi}, the minimizing solution f∗ can be represented as

f∗(·) =
∑
i

αiK(xi, ·) (2)

• Alternate idea from class: perform gradient descent in the space of α coefficients: ∇αL

– Takes n2 iterations to get same performance (n = number of iterations of functional
gradient descent)

– Every iteration is O(T 2)

5 Kernel SVM

• General loss function: L[f ] = λ
2 ||f ||

2 + Ct(Fxi [f ])

• General update rule: ft+1 ← (1− ληt)ft − ηtC ′t(Fxi [f ])K(xi, ·)

• SVM cost function: Ct(Fxi) = max(0, 1− f(xi)yi)

∇Ct =

{
0 , 1− yif(xi) ≤ 0

(C ′(Fxi [f ]))(∇Fxi [f ]) = −yiK(xi, ·) , otherwise
(3)
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