
Statistical Techniques in Robotics (16-831, F09) Lecture #23 11/10/2009

Kernel Review and Novelty Detection

Lecturer: Drew Bagnell Scribe: Jack Singleton

1 Review Online Kernel Machine

• inner product:
< f, g >=

∑
i

∑
j

αiβjK(xi, xj) = αTKβ

• fεHk, f =
∑
αiK(xi, ·)

• K is the Kernel Matrix

- K is positive definite (ex: K(x1, x2) = xT1 x2)

- The bigger the kernel width, the smoother the output and larger the computations

- The smaller the kernel width, the more regret we will pay because all points will be
constrained.

• Do online gradient descent with functions:

1. Initialize
f = 0

2. Receive
xt

3. Predict using

f(xt) =
n∑
i=1

αiK(xi, xt)

4. Receive
yt = Ct(f(xt))

5. Update
ft+1 ← ft + ηt+1C

′(f(xt))K(xi, xt)

Math sidenote: derivative computed with chain rule:

dC

dx
= C ′(f(xt)) · f ′(xt) = C ′(f(xt)) ·K(xi, xt)

6. Shrink weights by (1− ηtλ)

• As time progresses and the data set grows, the prediction step will take longer and longer to
compute. To shorten this computation time you may want to throw out old data points. In
class we talked about throwing out points by age or by weight.

1

• The regret is computed with:

Regret =
∑
t

(Ct(ft(xt))− Ct(f∗(xt)))|f∗ ∈ Hk

The regret bound:
Regret = ||∇Ct(f)||k · ||f∗||k

√
T

||f∗|| is the size of the function. ||∇Ct(f)|| can get as big as αTKα.

• Representer Theorem: For every loss function of the form
∑
C(f(xi))+γ||f ||2 the optimal

solution, f∗, is in the span of K(xi, ·).
(informally): Given a loss function and regularizer objective with many data points {xi}, the
minimizing solution f∗ can be represented as

f∗(·) =
∑
i

αiK(xi, ·) (1)

• Alternate idea from class: perform gradient descent in the space of α coefficients: ∇αL

– Takes n2 iterations to get same performance (n = number of iterations of functional
gradient descent)

– Every iteration is O(T 2)

2 Novelty Detection

• Call something ”not novel” if f ≥ threshold

• SVM novelty loss
L = max(0, γ − f(x))

if f(x) > γ
∇L = 0

else
f = f + αK(xi, ·)

Tricks

1. Use supervised learning to pick kernel

2. Race to be not novel: if you run out of time to declare something not novel, then just call it
novel and move on.

3. kd-tree

4. move-to-front

2

