Statistical Techniques in Robotics (16-831, F09) Lecture #26 (Nov. 19th)

Gradient Boosting
Lecturer: Drew Bagnell Scribe: Eric Whitman

1 Sparsity Misconceptions

Last time, we said that we should only run Exponentiated Gradient Descent on life if a small
number of things are good.

To analyze this claim, we look at the regret bounds:
Gradient Descent

R < |F|3|Gl2vT

Exponentiated Gradient Descent

R < |F|1|Gloo VT \/10g(d)

There also exist algorithms that interpolate between these two and have bounds of the form |F|,|G|,,
where p and ¢ are dual norms (% + % =1).

By comparing the bounds, we can debunk two common misconceptions about sparsity

1.1 Misconception 1

Claim: w* must be sparse for exp-grad to make sense.

Look at the example of the continuously rebalanaced portfolio. We also have Y w = 1, which
gives the Lq ball. In the best case for the non-exponential version, we evenly distribute the assets

(w; = wj). This gives |w|; =1 and |w|p = %

We also know that |G| > G;, which gives us

d d
Gla =Y G2 <\ | IGI% = VG|,
=1

=1

We can now substitute and compare the bounds:
|G|ov/I0g d vs. ﬁ\/&\G!m

This simplifies to v/logd vs. 1, meaning that even in the worst case in terms of w*, exponentiated
gradient descent can be (depending on the gradient) only worse by a factor of y/logd, which is
small.

Truth: If weights vary a lot and |G| is much different from |G|a, then exponentiated-gradient is
good.

1.2 Misconception 2

Claim: If there are lots of features, then do exp-grad.

This is false because the difference in volume between the L; and the Lo ball is larger in high
dimensions. The result is that |G|z >> |G|s. An example is that exp-grad is bad for bag-of-words.

2 Greedy Algorithms

2.1 eBoosting
1. w=0
2. compute [,V1

3. identify i* = arg max |V1I’|
]

4. wp— = eVIF

Repeat steps 2-4 until convergence.

One possible loss function is the squared error loss:

1
b=3 > (g —whay)?

t

Vi= Z(yt - wTiUt)(—l‘t)

t

Vii=—=Y (y—w'z) ()

t

2.2 Orthogonal Matching Pursuit

The name comes from signal processing. This is normally used with a squared error loss function.

1. w = 0; active set = ()

2. compute [,VI

3. identify i* = arg max V1|

4. active set U =¢* (add i* to the active set)

5. minimize over w restricted to active set

Repeat steps 2-5 until convergence.

Squared loss gives orthogonal residuals, which can make this algorithm quite efficient. It is identical
to AdaBoost for squared loss. e-boosting is almost always better than AdaBoost.

Greedy methods are actually sparse whereas exp-grad is only pseudo-sparse. This makes greedy

methods better computationally. Usually, most of the computational effort is in step 3: find

i* = arg max |VI'|. For many problems, we have “oracle” access to i*, meaning there is some trick
(2

to get +* without checking all possible i’s.

2.3 “Oracle” Access to i*

Suppose the actual features on the data, f, are 10 dimensional. Then z might be all small (depth
2) decision trees on f or x might be all hyperplane seperators on f. In either of these cases, z is
extremely high dimensional, but we have some other way of finding the best one.

Take the loss function [= Z(yt — f(x¢) + eh(ay))?, where f(z;) is what we have so far (the sum

t
of the previously added classifiers), and h(z;) is a new classifier h(z) : = {—1,1}.

We can then split the part that does not involve h (y; — f(x¢)) into two parts:
o = sign(y; — f(x¢)) = target output of h oy = |y, — f(xy)| = weight

If we substitute these in to the loss function, drop the €2 term, and drop the term that does not
depend on h, we can see that minimizing the original loss function is equivalent to minimizing:

arg min agorh(x

g " zt: toth(zt)
This is what we normally do when we train classifiers: we give it correct labelings (0;) and weights
(i), so we know how to minimize this efficiently.

This method is not quite correct because the classifier actually minimizes some other cost function
rather than the squared loss that we want.

2.4 A Different Loss Function

Rather than squared loss, we can use | = > max(0,1 — y: f(x¢))
I'=(1—=yuf(zy) > 0)?y : 0(In C programming langauge notation.)
Splitting this into 2 parts gives:

or = sign(l})

o = |l

