
Statistical Techniques in Robotics (16-831, F09) Lecture #8 (Tuesday September 22)

Convex Optimization and Gradient Descent

Lecturer: Drew Bagnell Scribe: Yi Zhang

1 Online Convex Programming

Consider a convex set G of experts, where each expert w ∈ G is, e.g., an assignment for the
parameters of our prediction model. At each time point t, we have a convex loss function lt(w)
defined on any expert w ∈ G. The optimal expert in w∗ ∈ G is defined as:

w∗ = argminw∈G

T
∑

t=1

lt(w) (1)

Our goal is by online choosing a set of expert wt at each time point t, to minimize the overall regret:

R({wt}Tt=1) =

T
∑

t=1

Rt(wt) =

T
∑

t=1

[lt(wt)− lt(w
∗)] (2)

2 Subgradients

2.1 Definition

Given a convex function f(), a subgradient of f() at point x is defined as any vector ∇fx that
satisfies (for any y):

f(y) ≥ f(x) +∇fT
x (y − x) (3)

Briefly, if a convex function f() is differentiable at x, the subgradient of f() at x is unique and is
the gradient at x. Otherwise, we can have more than one subgradients for f() at x.

2.2 Subgradient for online learning

According to the definition of subgradient, we can derive an upper bound for the regret:

Proof.

lt(w
∗) ≥ ∇lt(wt)

⊤(w∗ − wt) + lt(wt) (4)

Rt(wt) = lt(wt)− lt(w
∗) ≤ ∇lt(wt)

⊤(wt − w∗) (5)

R({wt}Tt=1) =
T

∑

t=1

Rt(wt) =
T

∑

t=1

[lt(wt)− lt(w
∗)] ≤

T
∑

t=1

[∇lt(wt)
⊤(wt − w∗)] (6)

1

From this upper bound, we can see that the regret at time t, i.e., Rt(wt), is highest if wt − w∗ is
on the direction of the subgradient ∇lt(wt). Of course we won’t let it happen ...

3 Projected Subgradient Descent

3.1 Algorithm

Yeah! Let’s minimize our overall regret by minimizing the upper bound. At each time t, we achieve
this by pushing wt towards the reverse direction of the latest subgradient. The algorithm, called
Projected Subgradient Descent, is as follows:

Algorithm 1 Projected Subgradient Descent():

1: Initialize w1 ∈ G

2: for t = 1...T do

3: Predict using wt, incur loss lt(wt), and get subgradient ∇lt(wt)
4: ŵt+1 ← wt − α∇lt(wt)
5: wt+1 ← ProjG[ŵt+1]
6: end for

The line 5 (wt+1 ← ProjG[ŵt+1]) projects the weights ŵt+1 back into the convex set G. Thanks to
the convexity, wt+1 is closer to any point in G than ŵt+1.

In line 4, α represents the step size, or learning rate. Large values of α will learn faster but
are less likely to converge as it may step over the minimal. Smaller values pay a larger upfront
cost but are more likely to converge and have a lower regret over time. There are various methods
where αt decreases over time.

3.2 Projected Gradient Descent Regret Bounds

Distance between optimal weight vector w∗ and the weight vector at time t (wt).

D(wt, w
∗) = (wt − w∗)T (wt − w∗) (7)

then the distance after the update for the next time step is:

D(wt+1, w
∗)−D(wt, w

∗) = ||wt − α∇lt −w∗||2 − ||wt − w∗||2 (8)

Now we substitute zt = wt − w∗ and get

D(wt+1, w
∗)−D(wt, w

∗) = z2
t − 2α∇lTt zt + α2∇l2t − z2

t (9)

canceling and substituting in for zt gives us:

D(wt+1, w
∗)−D(wt, w

∗) = −2α∇lTt (wt − w∗) + α2∇l2t (10)

2

Now we can sum over time (t = 0, 1, . . . , T − 1) to get the distance up until time T .

∑

t

(D(wt+1, w
∗)−D(wt, w

∗)) = −2α
∑

t

(

∇lTt (wt − w∗)
)

+
∑

t

(

α2∇l2t
)

(11)

∑

t

(D(wt+1, w
∗)−D(wt, w

∗)) = D(wT , w∗)−D(w0, w
∗) (12)

The overall regret R() is bounded by:

R({wi}T−1

i=0
) ≤

∑

t

(

∇lTt (wt − w∗)
)

= − 1

2α

[

D(wT , w∗)−D(w0, w
∗)−

∑

t

α2∇l2t

]

(13)

Next, we need to assume an upper bound G for ||∇lt||:

∇l2t ≤ G2 (14)

The bound on the overall regret then becomes:

R({wi}T−1

i=0
) ≤ α

2
G2 · T +

1

2α
D(w0, w

∗)− 1

2α
D(wT , w∗) (15)

Since we want an upper bound and the last term can only decrease this bound, we can eliminate
it.

R({wi}T−1

i=0
) ≤ α

2
G2 · T +

1

2α
D(w0, w

∗) (16)

Since we are dealing with a bounded convex set of w vectors, let us bound D(w0, w
∗) by the size

of the set F 2. Now we need to pick α to minimize regret. To do this, we take the derivative of the
above equation w.r.t α and set it equal to 0. Some algebra gives us

α =
F

G
√

T
(17)

and the regret is thus bounded by1

R({wi}T−1

i=0
) ≤ FG

√
T (18)

note that the regret grows sub-linearly with time which means that as t→∞:

R

t
−→ 0 (19)

Thus this algorithm is a “no-regret” algorithm.

1Drew says the right bound is actually R({wi}T−1

i=0
) ≤ 2FG

√
T

3

3.3 Examples

• Tree Prediction:
Given good object detection up-close, trees in this example, we want to learn to recognize
similar objects far away. An example of this would be to have good laser scan data for short
distances and trying to extend that to far objects detected via image characteristics (shape,
texture, color). The algorithm will try to detect objects far away and then check if it was right
when closer; this is an example of self-supervised online learning. Because what we predict
influences what we see in the future, regret might not be a good measure of performance as
it might change depending on the examples given.

Now, we are given the following state features:

– x1 = Red, x2 = Blue, x3 = Green

– x4 = point spread

– x5 = response of Gaber filter on image patch (texture)

– yt = {1,−1} ← tree or no tree

Using the loss function:
lt(wt) = (w⊤

t xt − yt)
2 (20)

We can use the following update rule:

wt+1 ← wt − 2α(w⊤
t xt − yt) · xt (21)

where (w⊤
T

xt − yt) is the residual.

• Portfolio Optimization:
We are given a set of investment weights, wt, and daily market return ratios, rt such that:

wt ≥ 0 (22)

∑

wt = 1 (23)

The daily increase in wealth is:
w⊤

t rt (24)

and total wealth over time is:
T

∏

t=1

w⊤
t rt (25)

We want to optimize the log-gain function:

T
∑

t=1

log(w⊤
t rt) (26)

We will compare the policy to a constantly rebalancing portfolio that adjusts the investments
each day to have constant investment ratios.

We make to following adjustments to the Projected Subgradient Descent algorithm:

4

– wi
0 = 1

N

– wi
t+1 ← wi

t + α
ri
t

∑

j w
j
t ·r

j
t

– Project each wi
t+1 back to the convex function (simplex)

The following problems exist with this algorithm, so you won’t get ”fabulously wealthy”:

– Constant balance may not necessarily be the best policy over time

– Fixed transaction costs add up

– Large actions will affect the stock’s market price

5

