Statistical Techniques in Robotics (16-831, F10)  Lecture#03 (Tuesday August 31)

Sample-based Filtering
Lecturer: Drew Bagnell Scribe: Matt Aasted '

1 Sampling
The belief of the robot is defined as:

Bel(xt) := p(wt|ure, 21:4)
Our claim is that in general, this is difficult to compute in closed form. It is difficult or impossible
to directly calculate the direct table of probabilities. But what are we going to use the belief of

for? We’re not just vaguely interested — we want to do things with it. What we really want most
of the time is the expectation, or various statistics such as the variance or other moments.

E[ft]
Var[#] = E((T — B[7])%

We can use sampling based methods to estimate these statistics without explicitly calculating the
distributions involved.

1.1 An Example

We have a map with rooms numbered 1, 2, 3 as shown below.

1 2

3

We want probability that robot is in room {1,2,3}. But how would we write this an expectation?

!Some content adapted from previous scribes: Elliot Cuzzillo



We define rooms as subsets of continuous space, and invent a function f() which is 1 if z; € room(1),
0 otherwise. This is essentially the indicator function of the room: 1,,0m

Then the probability the robot is in the room is the also the expectation of the indicator function:
Pr(robot is in room(1)) = E[l,oom()]- In our case, this is the sum of the probabilities of being
in a particular room. In general, the expectation of an indicator function is the probability of the
probability of the indicated expression.

In many cases, we don’t know p(z) in closed form, but we can generate samples (X) with pr(X = x).
Supposing this is true, we can do
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or more strongly
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Now, suppose that we have another room:

1

0

0 X 1

The room is the amoeba in the center. Let X be our uncertain quantity (Random Variable) and
Y = Lrgom(x) be the indicator function for the room. X ~ uniform on square - it is a vector where
both elements are uniformly distributed on the interval [0,1] We have oracle access to whether X
room or not, but we don’t have direct access to P(y).

To estimate it, we can generate random samples for X and calculate y. We then have samples of y,
and we can do:

17‘00m

where X;s are generated inependently for uniform ([0-1],[0-1])



1.2 An aside on 7
Given that you can sample using this method, how can you compute the area of the room? The
estimated area of the room is the total area times E[y]

The classical example is a Monte Carlo estimate of . To do this, we make the room a circle,
estimate random X, and count the samples of X inside the circle.

This was originally used for the Manhattan project and in nuclear physics. It has been reinvented
several times.

1.3 Return to Robots

Suppose we are in some state x; and we execute the command wu;, producing a banana shaped
distribution for x;. What we’d like to calculate is p(zyy¢|xt, ur), but more reasonably we’d like to
compute

Ep(:pt+1|xt,ut) [f(xt+1)]

where f() is arbitrary (example, the mean, or the variance)
However, we’re missing a key component: measurement probability.

What we really want to do is something that looks like:

P(@e41|2e41, ) o P21 |@e41)P(Te41 |2)
It is not obvious how to sample from the product of these — it is clear how to sample each individ-

ually, though less often for measurements given state than next state given state.

2 Importance sampling (IS)

Note: from here on we drop the dependence on controls for the sake of notational convenience.

The trick: Sample from the incorrect distribution, reweight samples to fix it. We cannot sample
from p, but it’s what we want. We can sample from g¢.
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Ep(@)[f(z)] = Y plx)f

Z(—ig is called the importance weight. When we are undersampling an area, it weights it stronger;

likewise, oversampled areas are weighted more weakly.



Consider the following (somewhat contrived) pair of functions:

Notice that there are places where p is nonzero and ¢ is zero, which means we have regions to
sample that we aren’t sampling at all.

Our estimate of the expectation of p becomes:

1 & p(zi)
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Note that the samples x; are drawn from gq.

For any of these to work, we have to be able to sample p(x; + 1|z;) and evaluate p(ziy1|Ti+1)

2.1 Example

Set ¢ as the motion model. Note that in reality we never use this — we use a better approximation
of p(x¢ + 1|x;) because the motion model takes too many samples to be reliable.

1
p= §P(2t+1|$t+1)p(ﬂ?t+1|$t)

X'~ p(w41|e)

P
w' = e p(zt+1|T41)

N
_ 1 .
i=1

But notice that we dropped the normalizer from bayes rule! (if we don’t know Z)



3 Normalized IS

Proposed fix:

Xzzg;rxi

Y=, w' is an estimate of how much we’ve sampled over how much we should’ve sampled which
is an estimate of p(z...)

If it’s low, we haven’t drawn enough samples or the probability of the observation is low.

forall ¢ do
Sample x from p(z¢)
end
forall ¢t € [1,T]do
forall ¢ do
sample xt from p(z¢|zt_y)
wis = p(zz])
end

forall 7 do

Normalize weights
w;
end

end

At any point in the algorithm, we can extract the expectation of the distribution:

Elf@)] = 3 wif(a')

4 SIR Filter (Particle filter, Condensation)

There is a bug here: The true path will be a sample with vanishing probability, so we have to
throw out low probability samples and resample in high probability regions. This is also known as
survival of the fittest.

Essentially, we insert a step where we line up all the samples with width determined by their weights
normalized by the sum of the weights. We then draw from the uniform distribution from [0,1] and
use those to select from the lined up samples. Since we sample by the weights, the new samples
are weighted as either 1 or % where NN is the number of samples. See Figure 1 for an illustration of
the sampling (though this is the low variance version from the next lecture — we are just selecting
from the yellow strip at random).
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Figure 7 Principle of the low variance resampling procedure. We choose a random

number r and then select those particles that correspond tou = v+ (m — 1)+ M~
wherem =1,... . M.



