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Graphical Models
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1 Graphical Models

Graphical models are a framework for reasoning about uncertain quantities and the structural
relationships between them. They are a union of probability and graph theory. Nodes represent
random variables and edges represent the links, or relationships between these random variables.

Graphical models can be viewed as a:

• Communication tool that helps to compactly express beliefs about a system.

• Reasoning tool that can be used to extract relationships that were not obvious when for-
mulating the problem. In particular graphical models enable us to visualize conditional
independence.

• Computational skeleton that helps organize how we perform computations on random
variables.

We will examine three types of graphical models:

• Bayes’ Nets (Directed Graphical Models)

• Gibbs Fields (Undirected Graphical Models)

• Factor Graphs (Undirected Graphical Models)

Graphical models are the equivalent of a circuit diagram — they are written down to visualize and
better understand a problem.

2 Bayes’ nets

One of the most common graphical models is called a Bayes’ net. Bayes’ nets are also known as
Bayesian networks, belief networks, directed graphical models, and directed independence diagrams.
In short, a Bayes’ net is a directed acyclic graph with nodes representing uncertain quantities
(random variables) and edges that encode relationships between them (often causal).

In Figure 1, we have uncertain quantities A, B, C, and we draw directed arrows between them to
represent relationships (typically causal). A bayesian network encodes a joint probability distri-
bution over all the nodes in the graph. In this case, our Bayes’ net encodes the joint probability
distribution, P (A,B,C,D).

1Some content adapted from previous scribe: Byron Boots
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Figure 1: A Bayesian network.

The basic factorization of the probability distribution using the chain rule of probability is

P (A,B,C,D) = P (A)P (B|A)P (C|A,B)P (D|A,B,C).

This factorization always holds, and is not dependent on any particular graphical model.

In the network shown in Figure 1, we can use the edges in the graph to eliminate unnecessary
conditional dependencies.

P (A,B,C,D) = P (A)P (B|A)P (C|A,B)P (D|C)

For an arbitrary Bayes’ net with nodes x1, x2, . . . , xn ∈ X, we can derive the joint distribution
P (X) as the product of each node xi given its parents π(xi).

P (X) =
∏

xi

P (xi|π(xi))

Note that this factorization strategy only works if there are no cycles in the graph, and that Bayes’
nets are acyclic by definition.

Bayes’ net are often thought of as encoding causal relationships. However, these relationships are
not necessarily causal. In our example, one should think of A as influencing B and C rather than
A causing B and C. If all the arrows on a Bayes’ net are flipped, then the resulting Bayes’ net is
equivalent to the original, since they both represent the same joint probability distribution.

In general, the absence of arrows is important in a Bayes net: less arrows mean more structure.
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2.1 Determining Dependencies

Bayes’ nets can be used to quickly determine whether pairs of variables are dependent on each
other. This is done by following all available paths between the two variables and checking if the
path is ’blocked’. A path is any sequence of edge connected nodes leading from the first variable
to the second. The Bayes’ net in Figure 2 has 2 paths from A to E.

A → B → D → E

A → C → D → E

Blockages are determined by visiting each node on a path and comparing the structure of surround-
ing nodes and edges to the 3 rule situations explained below.

Two variables are independent if all available paths between them are blocked. Any unblocked
paths show a possibility of dependence. It should be noted that this analysis can only be as good
as the Bayes’ net it is based on; an incomplete net may be missing paths that show a dependence.

A

B

C

D

E

Figure 2: There are 2 paths from A to D.

2.1.1 Rule 1: Markov Chain

Figure 3 is a Bayes’ net representation of a simple markov chain.

x1 x2 x3

Figure 3: A Bayesian network representation of a Markov chain.

An example of such a chain is the process of robot localization, although the usual zi and ui terms
have been omitted for simplicity. If the robot knows the current state, x2, then it does not need
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any information about past states, x1, in order to determine the next state, x3. For example if the
robot can only be on the 1st or 2nd floor of a building and it knows that it’s previous state was
that it was on the 1st floor. As there were no inputs any previous information about the robot’s
state is irrelevant, it must still be on the 1st floor. This is the same as saying that x1 and x3 are
independent if x2 is known.

P (x3|x2, x3) = P (x3|x2)

In the case where x2 is not known then knowledge of past states could provide information on the
current state x3. If our robot did not know it’s state at x2 but knew it was on the 1st floor at x1
then, given no inputs, x3 has a high probability of being the 1st floor. This is the same as saying
that x1 and x3 could be dependent if x2 is not known.

A B C

Figure 4: Markov chain is BLOCKED given B.

The rule is therefore that in a chain of nodes, as shown in Figure 4, C is independent from A if
B is known. This means there is a blockage on any path passing through a Markov chain with a
known middle node.

2.1.2 Rule 2: Two Parents, One Child (The Bagpipes Case)

@CMU

GPA Bagpipes

Figure 5: The Bagpipes Case.

Figure 5 is a simplified Bayes’ net representation of the process of getting into CMU. Carnegie
Mellon wants to admit students with a high GPA but it is also important to keep the school
bagpipe band strong. A student’s chances of getting into CMU can therefore be influenced by their
GPA and also by their bagpipe playing skills.
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Given any student applying to CMU knowing that they have good grades doesn’t tell us anything
about their bagpipe skills, the two are independent. This is changed if we then discover that
the student was admitted. Now if we know they are good at the bagpipes our expectation of their
grades is reduced as their admittance has been ’explained away’. The reverse is true if we know they
have particularly high grades. Thus knowledge about admittance creates a dependence between
the student’s bag piping skills and their GPA.

A

B

C

Figure 6: Two parents, one child case is NOT BLOCKED given B.

The rule is therefore that in a ’two parents, one child’ case, as shown in Figure 6, A is dependent
on C if B is known. The inverse is also true, A is independent from C if B is not known. This
means that there is a blockage on a path passing through the ’two parent, one child’ case if B is
unknown.

2.1.3 Rule 2 Extension: Addition of Further Children

Alarm

Earthquake Burglar

police

Figure 7: Home Alarm Example.
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Rule 2 can be extended with the addition of children of the child. Figure 7 shows an example were
an alarm can be set off by either an earthquake or a burglar and the police are called when the
alarm goes off. As with the bagpipes example the presence of an earthquake and a burglar become
dependent given the alarm going of. This is because if we know the alarm has been activated
knowledge about a burglar reduces the liklyhood of there having been an earthquake. If however
only the presence of the police is known the same dependency is formed as the police imply that
the alarm has been activated.

A

B

C

D

Figure 8: Path is NOT BLOCKED given either B or D.

The extension of rule 2 is therefore that if a child of the child is known the path is also unblocked.
With reference to Figure 8 the path is only blocked if B and any children of B are unknown.

2.1.4 Rule 3: One parent, Two Children

A

B

C

Figure 9: Rule 3, Anybot Example.

Figure 9 shows a Bayes’ net representation of the uses of an Anybot in an office. An Anybot can be
used to aid in teleconferenced meetings and can also be used as a racing vehicle. If we don’t know
that there is an Anybot and are told that there have been races the probability of teleconference
meetings is increased. This is because knowledge about races increases the chance of there being
an Anybot for use in meetings. If however we know there is an Anybot in the office the fact that
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people are racing it dosn’t change the likelihood of there being any teleconference meetings.

A

B

C

Figure 10: One parent, Two Children case is BLOCKED given B.

Rule 3 is therefore that in a ’one parent, two children’ case, as shown in Figure 10, A is independent
from C given B. This means that there is a blockage on a path passing through this case if the
parent, B, is known.

2.1.5 Example: Localization

u2

x1 x2

z1 z2

Figure 11: A Remote Controled Car.

Figure 11 shows a simple remote controlled car scenario with a human driver sending inputs based
on the car’s actual state. The derivation of Bayes Filter in ”Probabilistic Robotics” assumes that
xt−1 is independant of ut. To test that this is the case for the remote control example the two paths
between x1 and u2 need to be tested. The path via x2 is a case of rule 2 where both x3 and z3 are
unknown and so is blocked, however the direct path cannot be blocked. Therefore there does exist
a dependancy and the assumption is incorrect.

If the scenario is modified such that the input is now based on the previous observation and not a
human who knows the actual state the Bayes’ net looks like Figure 12. In this case the path via
x2 is still blocked and the path via z1 is a case of rule 1 where z1 is known and therfore blocked.
All paths are blocked and the assumption that xt−1 is independant from ut is valid.
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u2

x1 x2

z1 z2

Figure 12: A Remote Controled Car.

2.1.6 Example: Landmark Based Navigation

Figure 13 shows a bayesian network representation of a localisation scenario with internal states xi,
observations zi and landmarks li. If we pose the case that we see all the observations, z0, z1, z2, ...,
are the landmarks conditionally independent of each other? To take one case, is l1 ⊥ l2|Z?

The converging arrows at z0 are an example of rule 2 and the path remains unblocked as z0 is
known. Looking now at x0, rule 3 can be used to show there is no blockage as x0 is not known. The
path extends through x1 to z1, a rule 1 case where x1 is not known leaving the path unblocked.
Finally z1 to l2 is another unblocked rule 2 case. Thus, l1 and l2 are not conditionally independent
given z0 and z1.

The existence of conditional dependencies between landmarks introduces significant computational
complexity due to high dimensionality. In this case if the values of X can be observed the dependency
between l1 and l2, and all the landmarks, is removed. Using a particle filter, samples of X can
be taken making each landmark independent and allowing for sperate filters to be run for each
landmark, greatly reducing the dimensionality of the problem.
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Figure 13: A bayesian network representation of a localisation scenario.

3 Gibbs Field

A Gibbs Field is a collection of nodes that have undirected edges between them, this can be seen in
Figure 14. There is no causal link along edges rather it shows that the connected nodes are related
in some way, they ’move together’. As with a Bayes’ net less connections means more structure.

x0

x1

x2 x3

x4

Figure 14: A Gibbs Field with nodes x0, x1, x2, x3, x4.

A clique is a fully connected subset of the the graph, i.e. all nodes in a clique must be connected
to all other nodes in the clique. In Figure 14 x0, x1, and x2 form a clique and x2, x3, and x4 also
form a clique. These two cliques are known as maximal cliques because they are not part of any
larger clique, however they are not the only cliques. The full set includes pairs of connected nodes,
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e.g. x0 and x1 and individual nodes. It is only nessasry to pay attention to maximal cliques as
characteristics of smaller cliques can be absorbed into the larger maximal cliques.

The joint probability distribution can be represented by the product of a set of clique potential
functions φ (see Equation 1).

P (~x) =
1

Z

∏

i∈cliques

φi(Xi) (1)

The first clique has functions representing the probability distribution of the set of three variables
x0, x1, x2: φi(x0, x1, x2), similarly there exists functions for the other maximal clique, φi(x2, x3, x4).
Each potential function φi must be positive and unlike probability distribution functions they do
not need to sum to 1. Because the potential functions are not normalized a normalization constant,
Z (see Equation 2) is required in Equation 1 to create a valid probability distribution.

Z =
∑

x

∏

i∈cliques

φi(xi) (2)

The potential functions can also be thought of as energy functions, fi(Xi), with a probability
function as shown in Equation 3. The energy assigned by the functions fi(Xi) is an indicator of
the likelihood of the corresponding relationships within the clique. Higher energies lead to a lower
probability and vis-versa.

P (~x) =
1

Z
e

−

∑

i∈cliques

fi(Xi)

(3)
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