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1 Gibbs Fields

Like a Bayes’ Net, a Gibbs Field is a representation of a set of random variables and their relation-
ships. An example of a Gibbs Field is given in Figure 1; edges are undirected, and connote some
correlation between the connected nodes. As with a Bayes’ Net, fewer connections means more
structure. Gibbs Fields are powerful because they imply a way to write the joint probability of the
random variables as functions over cliques in the graph.
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Figure 1: A Gibbs Field with nodes x1, x2, x3, x4, x5.

1.1 Cliques and Joint Probability

A clique is any fully connected subset of the the graph (e.g. {x4}, {x1, x2, x3}, or {x3, x5}). We
denote the set of all cliques in a graph as C, with a clique ci ∈ C comprising its nodes (e.g.
c3 = {x3, x5}). The joint probability for any set of random variables x = {x1, . . . xn} represented
by a Gibbs Field can be written as the product of clique potentials φi:

P (x) =
1
Z

∏
ci∈C

φi(ci), (1)

with φi(ci) the ith clique potential, a function only of the values of the clique members in ci. Each
potential function φi must be positive, but unlike probability distribution functions, they need
not sum to 1. A normalization constant Z is required in to create a valid probability distribution
Z =

∑
x

∏
c∈C φi(ci).

For any Gibbs Field, there is a subset Ĉ of C consisting of only maximal cliques which are not
proper subsets of any other clique. For example, the Gibbs Field in Figure 1 has two maximal
cliques: ĉ1 = {x0, x1, x2} and ĉ2 = {x2, x3, x4}. We can write a clique potential φ̂ for each maximal
clique that is the product of all the potentials of its sub-cliques. In this way, we can write the joint
probability as only a product over these maximal clique potentials:

P (x) =
1
Z

∏
ci∈Ĉ

φ̂i(ci). (2)

1Some content adapted from previous scribes: Byron Boots
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We usually take these potentials to be only functions over the maximal cliques, as in (2).

1.2 Clique Potentials as Energy Functions

Often, clique potentials of the form φi(ci) = exp(−f(ci)) are used, with fi(ci) an energy function
over values of ci. The energy assigned by the function fi(ci) is an indicator of the likelihood of
the corresponding relationships within the clique, with a higher energy configuration having lower
probability and vice-versa. If this is the case, (1) can be written as

P (x) =
1
Z

exp

−∑
ci∈C

fi(ci)

 . (3)

For example, we can write energy functions over the cliques in the example graph from Figure 1.
Let f1({x0, x1, x2}) = x2

0 + (x1 − 5x2 − 3)2, and f2({x2, x3, x4}) = (x2 − x3)2 + (x2 + x3 + x4)2.
Then the joint probability can be written as

P (x) =
1
Z

exp
[
−(x2

0 + (x1 − 5x2 − 3)2)− ((x2 − x3)2 + (x2 + x3 + x4)2)
]
.

In this form (fi quadratic in the xs), the Gibbs Field is known as a Gaussian Gibbs Field.

1.3 Moralizing: Converting a Bayes’ Net to a Gibbs Field

Consider the Bayes’ Net in Figure 2(a). Simply removing the arrows (Figure 2(b)) to create a Gibbs
Field is not sufficient! In particular, in the resulting Gibbs Field, observing node B causes nodes
A and C to become independent. This is the opposite of what the original Bayes’ Net represented!

Instead, we need to moralize the graph. Whenever there are two parents that are not connected
(married), we connect them. Thus, Figure 2(c) shows the correct representation of the original
Bayes net. Note that during this conversion we actually lose information, namely that A and C
are marginally independent.
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Figure 2: Moralizing process.

2



2 Markov Random Fields (MRFs)

A Markov Random Field (MRF) is an undirected graphical model that explicitly expresses the
conditional independence relationships between nodes. Two nodes are conditionally independent if
all paths between them are blocked by given nodes. See Figures 3(a) and 3(b) for examples. Note
that this rule is much simpler than for Bayes’ Nets. Due to the way that Markov Random Fields
express the relationship between nodes, they make a lot of sense as a representation of physical
space.
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(a) Node x1 is conditionally independent to
node x3 given x2, x4 and x7. There is no
unblocked path between x1 and x3.
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(b) There is at least one path from x1 to
x3 given x2, x4 and x6; x1 and x3 are not
(necessarily) conditionally independent.

Figure 3: Markov Random Field example.

2.1 Markov Random Field Constraints

The question is, given a Markov Random Field (and its associated conditional independence rela-
tionships), what is the form of the joint probability distribution? Indeed, can we even show that
such a distribution exists? For example, consider the Field from Figure 3(a). We could write a
series of conditional independence relationiships that are asserted from the Field. For example:

x1 ⊥ x3 | x2, x5

x1 ⊥ x7 | x3, x6, x10

x9 ⊥ x12 | x2, x7, x10
...

What can we say about the form of the joint probability function P (x) in this case?

There is a trivial example of a suitable joint probability distribution – when all the nodes are
independent:

P (x) =
∏

i

P (xi).

This would be a possible solution even for a fully connected Markov Random Field – the weakest
possible Field, in which no conditional independencies are specified. But any given field, such as
the one from Figure 3(a), has fewer edges (and therefore more structure). We should hope that
there exists a stronger form of P (x) that follows from a Markov Random Field.

3



The Hammersley-Clifford theorem proves that a Markov Random Field and Gibbs Field are equiv-
alent with regard to the same graph.2 In other words:

• Given any Markov Random Field, all joint probability distributions that satisfy the condi-
tional independencies can be written as clique potentials over the maximal cliques of the
corresponding Gibbs Field.

• Given any Gibbs Field, all of its joint probability distributions satisfy the conditional inde-
pendence relationships specified by the corresponding Markov Random Field.

2Actually, this is true only as long as P (x) ≥ 0 ∀x; that is, as long as all configurations of values are possible.
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