Statistical Techniques in Robotics (16-831, F10) Lecture#11 (Tuesday September 28)

The Project Gradient Method and Regret Bounds

Lecturer: Drew Bagnell Scribe:Siyuan Feng 1

1 Online gradient descent

1.1 Instantaneous regret

Let $l_i = (w_t^T f_i - y_i)^2$ our loss functions, where w is an expert and f is a feature. We want to minimize the total regret in retrospect with respect to the best expert w^* :

$$
R(w) = \sum_{t=0}^{T} l_t(w_t) - l_t(w^*).
$$
 (1)

We call $l_t(w_t) - l_t(w^*)$ the instantaneous regret for some w_t at time t.

1.2 Subgradient

Subgradient at point x, $\nabla f(x)$, is a vector / hyperplane that lower bounds the function globally. For non-differentiable points, there exists more than one subgradients. For $x \neq y$, we have

$$
f(y) \ge f(x) + \nabla f(x)^{T} (y - x).
$$
\n(2)

For our instantaneous regret, we have

$$
l_t(w^*) \ge l_t(w_t) + \nabla l_t(w_t)^T (w^* - w_t)
$$

$$
l_t(w_t) - l_t(w^*) \le \nabla l_t(w_t)^T (w_t - w^*).
$$
 (3)

 \overline{f}

The left hand side is the instantaneous regret, and the right hand side is some linear function times $(w_t - w^*)$. Thus our total regret will be bounded by $\sum_{t=0}^{T} \nabla l_t (w_t)^T (w_t - w^*)$.

¹Some content adapted from previous scribes: Dmitry Berenson, Forrest Rogers-Marcovitz

1.3 Algorithm for projected online subgradient descent

This algorithm is a method to minimize the regret for a online convex optimization problem. Line 5 projects \hat{w}_{t+1} back into the convex set C, and α in line 4 is the learning rate. Smaller α

Algorithm 1 Projected Subgradient Descent(): 1: choose w_0 2: for $t = 1...T$ do 3: Incur loss $l(w_t)$ and receive any $\nabla l_t(w_t)$ 4: $\hat{w}_{t+1} \leftarrow w_t - \alpha \nabla l_t(w_t)$ 5: $w_{t+1} \leftarrow Proj_c[\hat{w}_{t+1}]$ 6: end for

pays a larger upfront cost but is more likely to converge and has a lower regret over time. α can also be dependent on t.

Note that the projection will not cause the loss to grow, because it will bring \hat{w}_{t+1} closer to any member of C , and thus closer to the optimal expert w^* too.

2 Regret bounds for projected subgradient descent

2.1 Distance between w_t and w^*

The distance between w_t and w^* at time t is defined as

$$
D(w_t, w^*) = (w_t - w^*)^T (w_t - w^*)
$$
\n(4)

Now we look at

$$
D(w_{t+1}, w^*) - D(w_t, w^*)
$$

= $(w_t - \alpha \nabla l_t (w_t) - w^*)^2 - (w_t - w^*)^2$
= $(z_t - \alpha \nabla l_t (w_t))^2 - z_t^2$
= $\alpha^2 (\nabla l_t (w_t))^2 - 2\alpha \nabla l_t^T (w_t) z_t,$ (5)

where $z_t = w_t - w^*$. If we sum all the term over time, the intermediate terms will all cancel out and leave us just $D(w_T, w^*) - D(w_0, w^*)$.

$$
= \sum_{t} D(w_{t+1,w^*}) - D(w_t, w^*)
$$

= $-2\alpha \sum_{t} (w_t - w^*) \nabla l_t + \alpha^2 \sum_{t} |\nabla l_t|^2$
= $D(w_T, w^*) - D(w_0, w^*)$
 $\leq -2\alpha \sum_{t} (w_t - w^*) \nabla l_t + \alpha^2 GT,$ (6)

where $|\nabla l_t|^2 \leq G$. Thus we have

$$
2\alpha R_T \le 2\alpha \sum_t (w_t - w^*) \nabla l_t \le D(w_0, w^*) - D(w_T, w^*) + \alpha^2 GT \tag{7}
$$

Sine the distance between w_T and w^* is always non negative, we can throw away the $D(w_T, w^*)$ term and still keep the inequality valid.

$$
R_T \le \sum_t (w_t - w^*) \nabla l_t \le \frac{D(w_0, w^*)}{2\alpha} + \frac{\alpha GT}{2} \le \frac{\alpha GT}{2} + \frac{F}{2\alpha},\tag{8}
$$

where F is the largest distance between any two experts in the set. Suppose we set $alpha = \sqrt{\frac{F}{GT}}$, then the upper bound for total regret is bounded by \sqrt{GTF} , growing sub linearly of T.

3 Portfolio optimization

We want to invest in n different stocks, and given a set of investment weights w_i s.t. $w_i \geq 0$, and $\sum w_i = 1$. We also know about market returns ratios $r_i = \frac{value_{t+1}^i}{value_t^i}$. So the daily increase in wealth $\overline{\text{t}}_t^T$ and the total wealth over time is $m\Pi w_t^T r_t$, where m is the total value of initial investment. We want to maximize $\log \Pi w_t^T r_t = \sum \log w_t^T r_t$. We compare the policy to a constantly rebalancing portfolio that maintains a set constant investment ratios.

We can use use the algorithm presented above with some modifications

$$
\bullet\ \ w_0^i=\tfrac{1}{n}
$$

$$
\bullet \ \ w_{t+1}^i=Proj[w_t^i+\alpha \frac{r_t^i}{\sum w_t^j r_t^j}]
$$