
Statistical Techniques in Robotics (16-831, F10) Lecture#11 (Tuesday September 28)

The Project Gradient Method and Regret Bounds

Lecturer: Drew Bagnell Scribe:Siyuan Feng 1

1 Online gradient descent

1.1 Instantaneous regret

Let li = (wT
t fi − yi)2 our loss functions, where w is an expert and f is a feature. We want to

minimize the total regret in retrospect with respect to the best expert w∗:

R(w) =
T∑
t=0

lt(wt)− lt(w∗). (1)

We call lt(wt)− lt(w∗) the instantaneous regret for some wt at time t.

1.2 Subgradient

Subgradient at point x, ∇f(x), is a vector / hyperplane that lower bounds the function globally.
For non-differentiable points, there exists more than one subgradients. For x 6= y, we have

f(y) ≥ f(x) +∇f(x)T (y − x). (2)

For our instantaneous regret, we have

lt(w
∗) ≥ lt(wt) +∇lt(wt)

T (w∗ − wt)

lt(wt)− lt(w∗) ≤ ∇lt(wt)
T (wt − w∗).

(3)

The left hand side is the instantaneous regret, and the right hand side is some linear function times
(wt − w∗). Thus our total regret will be bounded by

∑T
t=0∇lt(wt)

T (wt − w∗).

1Some content adapted from previous scribes: Dmitry Berenson, Forrest Rogers-Marcovitz

1

1.3 Algorithm for projected online subgradient descent

This algorithm is a method to minimize the regret for a online convex optimization problem.
Line 5 projects ŵt+1 back into the convex set C, and α in line 4 is the learning rate. Smaller α

Algorithm 1 Projected Subgradient Descent():

1: choose w0

2: for t = 1...T do
3: Incur loss l(wt) and receive any ∇lt(wt)
4: ŵt+1 ← wt − α∇lt(wt)
5: wt+1 ← Projc[ŵt+1]
6: end for

pays a larger upfront cost but is more likely to converge and has a lower regret over time. α can
also be dependent on t.

Note that the projection will not cause the loss to grow, because it will bring ŵt+1 closer to any
member of C, and thus closer to the optimal expert w∗ too.

2 Regret bounds for projected subgradient descent

2.1 Distance between wt and w∗

The distance between wt and w∗ at time t is defined as

D(wt, w
∗) = (wt − w∗)T (wt − w∗) (4)

Now we look at

D(wt+1, w
∗)−D(wt, w

∗)

= (wt − α∇lt(wt)− w∗)2 − (wt − w∗)2

= (zt − α∇lt(wt))
2 − z2t

= α2(∇lt(wt))
2 − 2α∇lTt (wt)zt,

(5)

where zt = wt − w∗. If we sum all the term over time, the intermediate terms will all cancel out
and leave us just D(wT , w

∗)−D(w0, w
∗).

=
∑
t

D(wt+1,w∗)−D(wt, w
∗)

= −2α
∑
t

(wt − w∗)∇lt + α2
∑
t

|∇lt|2

= D(wT , w
∗)−D(w0, w

∗)

≤ −2α
∑
t

(wt − w∗)∇lt + α2GT,

(6)

where |∇lt|2 ≤ G. Thus we have

2αRT ≤ 2α
∑
t

(wt − w∗)∇lt ≤ D(w0, w
∗)−D(wT , w

∗) + α2GT (7)

2

Sine the distance between wT and w∗ is always non negative, we can throw away the D(wT , w
∗)

term and still keep the inequality valid.

RT ≤
∑
t

(wt − w∗)∇lt ≤
D(w0, w

∗)

2α
+
αGT

2
≤ αGT

2
+
F

2α
, (8)

where F is the largest distance between any two experts in the set.

Suppose we set alpha =
√

F
GT , then the upper bound for total regret is bounded by

√
GTF , growing

sub linearly of T .

3 Portfolio optimization

We want to invest in n different stocks, and given a set of investment weights wi s.t. wi ≥ 0, and∑
wi = 1. We also know about market returns ratios ri =

valueit+1

valueit
. So the daily increase in wealth

is wT
t rt, and the total wealth over time is mΠwT

t rt, where m is the total value of initial investment.
We want to maximize log ΠwT

t rt =
∑

logwT
t rt. We compare the policy to a constantly rebalancing

portfolio that maintains a set constant investment ratios.
We can use use the algorithm presented above with some modifications

• wi
0 = 1

n

• wi
t+1 = Proj[wi

t + α
rit∑
wj

t r
j
t

]

3

