Statistical Techniques in Robotics (16-831, F10) Lecture##11 (Tuesday September 28)

The Project Gradient Method and Regret Bounds

Lecturer: Drew Bagnell Scribe:Siyuan Feng !

1 Online gradient descent

1.1 Instantaneous regret

Let I; = (wf fi — y;)? our loss functions, where w is an expert and f is a feature. We want to
minimize the total regret in retrospect with respect to the best expert w*:

T

R(w) = ly(wy) — l(w*). (1)

t=0

We call l;(w;) — l;(w*) the instantaneous regret for some w; at time t¢.

1.2 Subgradient

Subgradient at point x, V f(z), is a vector / hyperplane that lower bounds the function globally.
For non-differentiable points, there exists more than one subgradients. For = # y, we have

Fy) = f@) + V(@) (y - ). (2)
For our instantaneous regret, we have

Li(w*) > Li(wy) + Vig(we) " (w* — wy)

3
Li(wy) — L(w*) < Vig(wy)" (wy — w*). ®)

The left hand side is the instantaneous regret, and the right hand side is some linear function times
(wy — w*). Thus our total regret will be bounded by ZtT:o Vi (we) T (wy — w*).
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1.3 Algorithm for projected online subgradient descent

This algorithm is a method to minimize the regret for a online convex optimization problem.

Line 5 projects w1 back into the convex set C, and « in line 4 is the learning rate. Smaller «

Algorithm 1 Projected Subgradient Descent():

1: choose wy

2: fort =1...T do

3:  Incur loss l(w;) and receive any Vi (wy)
4: th — Wt — aVlt(wt)

51 W1 < Projeiwy]

6: end for

pays a larger upfront cost but is more likely to converge and has a lower regret over time. « can

also be dependent on t.

Note that the projection will not cause the loss to grow, because it will bring ;41 closer to any

member of C, and thus closer to the optimal expert w* too.

2 Regret bounds for projected subgradient descent

2.1 Distance between w; and w*

The distance between w; and w* at time ¢ is defined as
D(wg, w*) = (w; — w*)" (wy — w¥)
Now we look at
D(wegr, w") — D(wg, w*)
= (wy — aVig(ws) — w*)? — (w; — w*)?
= (2t — aVl(w))? — 2
= a*(Vly(wr))? = 2aVI{ (wy)z,

()

where z; = wy — w*. If we sum all the term over time, the intermediate terms will all cancel out

and leave us just D(wp,w*) — D(wg, w*).

= ZD thw — D(wt, *)

= —QQZ wy — w*) Vi + o? Z|Vl 2

= D(wT, *) — D(wp, w*)
< - az wy — w*) Vi + o*GT,

where |V1;|? < G. Thus we have

2R < 2a Z(wt — w*)Vi; < D(wg, w*) — D(wp, w*) + a?GT



Sine the distance between wr and w* is always non negative, we can throw away the D(wp,w™*)
term and still keep the inequality valid.

D * GT GTI F
Ry < Z(wt _ w*)VZt < (U)O,ZU ) + «Q < o L2 (8)
t

2a 2 — 2 2o

where F' is the largest distance between any two experts in the set.

Suppose we set alpha = %, then the upper bound for total regret is bounded by vVGT'F, growing
sub linearly of T'.

3 Portfolio optimization

We want to invest in n different stocks, and given a set of investment weights w; s.t. w; > 0, and
valueiJrl

> w; = 1. We also know about market returns ratios r; = . So the daily increase in wealth

valuey
is w] r, and the total wealth over time is mITw/ r;, where m is the total value of initial investment.
We want to maximize log ITw/ r; = 3" logw] r;. We compare the policy to a constantly rebalancing
portfolio that maintains a set constant investment ratios.
We can use use the algorithm presented above with some modifications
i _ 1
o Wy = -

S wir]

e wi , = Projlw} + o



