
Statistical Techniques in Robotics (16-831, F10) Lecture #14 (Thursday October 7th)

Support Vector Machines

Lecturer: Drew Bagnell Scribe: Robert Fisher 1

1 Introduction

We begin by considering binary, linear classification. In this problem, we are trying to map elements
from our feature space into the set {−1, 1}. When we have two features, F1, F2 ∈ R, we can think
of the problem graphically. In the following figure, we represent the points with a label of 1 as O’s,
we the points with a label of −1 as X’s. We wish to find a linear decision boundary (a straight line)
that separates the points from each class. The decision boundary is shown as the dotted line.

X

X

X

X

O

O

O

O

F1

F2

Figure 1: Linear binary classification

To represent this notion mathematically, we denote the ith training point as fi, and the class of
this point as yi. The linear classification problem requires us to find a set of weights w such that:

∀i yiw
T fi ≥ 0 (1)

Note that the decision boundary need not pass through the origin. We often use a dummy variable
F0 = c for constant c 6= 0, which allows us to use w0 as an offset.

One issue with this formulation of the problem is that it has a trivial solution. Specifically, if we
set all of our weights to 0, we will have yiw

T fi = 0 for all points. To address this issue, we modify
1Some content adapted from previous scribe: Alan Kraut

1

our constraints to be:
∀i yiw

T fi ≥ margin (2)

This can have the added benefit of improving generalization. Once again, we can represent this
graphically. In the following picture, the space between the dotted line and the decision boundary
represents the margin.

X

X

X

X

O

O

O

O

F1

F2

Figure 2: Linear binary classification with margins

We further see that the magnitude of our weight vector does not matter, only the orientation affects
classification. Therefore we can restrict w to ||w||2 = 1. Taken together, this yields the following
formulation:

Maximize margin
Such that ∀i yiw

T fi ≥ margin
||w||2 ≤ 1

We use ||w||2 ≤ 1 instead of ||w||2 = 1 to make sure that our problem remain convex.

This problem is generally solved in the dual, where we hold the margin fixed and minimize the
magnitude of the weights. Therefore the final formulation of the hard margin SVM problem is:

Minimize ||w||2
Such that ∀i yiw

T fi ≥ 1
margin > 0

This last formulation is an example of a quadratic problem, which we are able to solve efficiently.
Unfortunately, the hard margin SVM requires that the data be linearly separable, which is almost

2

never the case. To address this issue, we introduce a slack variable, ξ. The problem now becomes:

Minimize λ||w||2 +
∑

i

ξi

Such that yiw
T fi ≥ 1− ξi

ξi ≥ 0
margin > 0

There will be one slack variable ξi to correspond to each of the T data-points that we are considering.

To make this online, we observe that ξ = max(0, 1− yiw
T fi), because the slack variable is 0 if this

point is labeled correctly. This allows us to generate the loss function

lt = λ||w||2 + max(0, 1− ytw
T ft) (3)

Our update for w is now as follows.
w ← w − 2αtλw (4)

And if the output for this time step was incorrect,

w ← w + αtytft (5)

We note that this loss function will not allow us to minimize the number of mistakes made by the
algorithm. In fact, solving this problem with a 0-1 loss function (which would minimize the number
of mistakes) is known to be NP-hard. We can visualize the difference between these loss functions
with the following figure, in which Z = wT fi:

0

1

Z 1

Hinge loss

Mistake loss

Figure 3: Loss functions

Our loss function, the hinge loss function, is convex, while the mistake loss (0-1 loss) function is
not. However, we do see intuitively that the loss function we are using is the best “convexification”
of the NP-hard problem.

3

2 Implementing Online SVMs

2.1 Selecting αt

• Stock algorithm would be to set αt proportional to 1√
t
.

• If we have T elements, each with a maximum value of F , the maximum gradient, G, is
√
TF .

This results in a regret that is R ≤
√
FGT .

• This is not as good as we could do.

• Notice that lt is an extremely good convex function. It is a quadratic plus a convex function.
In the same way all convex functions lie above a line (a subgradient) from every point, lt lies
above a quadratic from every point.

• Specifically, if it is always the case that

f(y) ≥ f(x) +
H

2
(y − x)2 +∇fT

x (y − x) (6)

then f(x) is said to be H-strongly convex.

• In this case lt is λ-strongly convex.

• If αt = G
Ht , then regret≤ G2

H (1+log t). log t is really good, and this learning rate and algorithm
is essentially the current best for this class of problem.

2.2 SVMs with Multiple Classes

We can represent problems with more than two classes by having a weight vector, wi for each class.

• When we get a classification of a particular example (for example, example i is of class 1),
we generate a set of constraints that can be expressed as either

wT
1 fi ≥ wT

2 fi + 1
wT

1 fi ≥ wT
3 fi + 1 (7)

wT
1 fi ≥ wT

4 fi + 1
. . .

or
wT

1 fi ≥ max
c 6=i

(wT
c fi + 1) (8)

• By the same argument as before

ξ = max(0,max(wT
c f + 1)− wT

1 f) (9)

• We want to update each w by gradient descent on the partial of the cost with respect to that
particular w.

4

• Remember the cost is lt = λ||w||2 + ξ. We want the update step to be

wc ← wc − ∂wc lt (10)

• In the case that the example was classified correctly, ∂wc lt = 0. If it was misclassified, there
are three cases with different partials: the correct class, the class we incorrectly decided this
was an example of, and all others.

∂wc = −fi, yi = c (11)
∂wc = fi, c = argmax

c
(wT

c fi + 1) (12)

∂wc = 0, otherwise (13)

• That update is for the max representation. If we use the multiple constraints representation
it is similar, except we update both w1 and wc for all c which violate the constraint.

5

