Statistical Techniques in Robotics (16-831, F10) Lecture #16 (Thursday October 14")

Bayesian Linear Regression (BLR) Part 1
Lecturer: Drew Bagnell Scribe: Heather Knight, Xinjilefu !

1 Bayes’ Online Learning with a Prior

1.1 Standard Weighted Majority with a Prior

e Numer of experts: N
e Prior: p; (p; >0and > ;p; > 1)

Set initial non-uniform weights to each expert: wi1 = Np;

Each expert makes prediction y; € {0,1}

fort=1,---,T

Predict:

e Predict 1 if

yi=1 ;=0
e else, Predict 0
Update:
e If expert e; made a mistake, wf-“ — %wf

Analysis of Algorithm:

e Total weights of the experts will decrease over time with mistakes W =, w;
e Weight of the best expert w* < W

e m is the total number of mistakes predicted by the algorithm

e m* are the number of mistakes made by the best expert:

w* = 27" Np* (2)

1Some content adapted from previous scribes: Kevin Lipkin, Alvaro Collet-Romea, Laura Lindzey and Hans
Pirnay



The total weight W is at most

Thus, since w* < W

—m” +logy p* < —mc (5)
where ¢ = logQ(g)

Therefore, the total mistakes made by the algorithm are bounded by:

m* + log, (L
m < gQ(p ) 6)
c

Weighted majority using prior:

1.2

No dependence on the number of expert N
Because of prior, infinite number of experts are possible (except for the weight update)
If you see “log n” where n is some discrete set of experts, think hidden uniform distribution

Every learning algorithm has a prior, the prior for the Weighted Majority is all experts are
equally good (p; = +)

Priors in hypothesis space correspond to weights on experts

General Weighted Majority Update

Bayes’ Rule is a special case of weighted majority

Predict:

— Choose expert e; in proportion to Xiwifw
7

— Predict the same as what expert e; predicts
Receive Loss: (1)

Update Weights:

. wlﬁl _ wfe—alt(i)

or, use first term of Taylor Series expansion:
— wit™ = wi(1 — aly(i))
shows that Bayes Rule has no regret properties

Expert e;’s prediction is a probability distribution: p;(y)



Figure 1: Graphic model of BLR

2 Bayes’ Linear Regression

e O = weight vector
e 1, = set of features at every timestep

e 1, = true prediction of outcome

We want to derive how to update our representation given a series of data D = {x, y} up to timestep
t and x¢y1, the probability of an observation ;11 is

pialees. D) = [ pealo, D.0) - p(6|D)do )
— [ aalorss.6) - pl6lD) ®)
In BLR, the prior of the weight vector € is a Gaussian where 6 ~ N (1, Xo).

p(0) = - exp{~(0 — 10) 55 (0 — o)} )

This is called the Moment Parameterization of a Guassian, where Y is positive-definite and sym-
metric.

The Natural Parameterization is given by:

1 1
p(0) = . eXP{JoT@ - §9TP09} (10)
where
Py =7 (11)
J() 5 P(),u() (12)

We can calculate p(6|D) recursively using the Bayes’ Theorem

p(01D) = ~p(ul6, D)p(6D) (13)



where we know the likelihood p(y:| D, 0) = p(y:|z¢,0) is given by a Gaussian N (67 x4, 0?)

1 — (0T — y)?
plurler.0) = L expf ~ I Z W) (14)

The updating rule for p(0|D) at timestep ¢ is given by multiplication of two exponential functions.
Adding the exponent of the prior to that of the likelihood yields

1 2 1
—50% (072 — )" + J10 — 5eTPHe (15)

collecting terms to find updates J; and P;:

1 1
= —3,2 (GT:rt:UtTQ — 20Tz + ytz) + JtT—19 - §9Tpt—19 (16)
T T 2
Ti Yt T 1 T [ Tty Yi
( L+ Jt_1> 0~ 50 < - +Pt1> ~ 357 (17)

Since this all happens in the exponent of an exponential function, the constant y?/o?-term can be
shifted into the regularizing constant z. Thus, the update rules for J; and P; are

x

J = %+Jt_1 (18)
T
T+

P = ;zt + P (19)

1. In a gaussian model, a new datapoint always lowers the variance - this downgrading of the
variance does not always make sense

2. If you believe there are outliers, this model won’t work for you

3. The variance is not a function of y;. The precision is only affected by input not output. This
is a consequence of having the same o (observation error) everywhere in space.




