Statistical Techniques in Robotics (16-831, F10) Lecture #16 (Thursday October 14th) Bayesian Linear Regression (BLR) Part 1 Lecturer: Drew Bagnell Scribe: Heather Knight, Xinjilefu¹

1 Bayes' Online Learning with a Prior

1.1 Standard Weighted Majority with a Prior

- Numer of experts: N
- Prior: $p_i \ (p_i \ge 0 \text{ and } \sum_i p_i \ge 1)$
- Set initial non-uniform weights to each expert: $w_i^1 = N p_i$
- Each expert makes prediction $y_i \in \{0, 1\}$
- for $t = 1, \cdots, T$

Predict:

• Predict 1 if

$$\sum_{y_i=1} w_i^t \ge \sum_{y_i=0} w_i^t \tag{1}$$

• else, Predict 0

Update:

• If expert e_i made a mistake, $w_i^{t+1} \leftarrow \frac{1}{2} w_i^t$

Analysis of Algorithm:

- Total weights of the experts will decrease over time with mistakes $W = \sum_i w_i$
- Weight of the best expert $w^* \leq W$
- m is the total number of mistakes predicted by the algorithm
- m^* are the number of mistakes made by the best expert:

$$w^* = 2^{-m^*} N p^* \tag{2}$$

¹Some content adapted from previous scribes: Kevin Lipkin, Alvaro Collet-Romea, Laura Lindzey and Hans Pirnay

• The total weight W is at most

$$W \le N \left(\frac{4}{3}\right)^{-m} \tag{3}$$

• Thus, since $w^* \leq W$

$$2^{-m^*} N p^* \le N \left(\frac{4}{3}\right)^{-m} \tag{4}$$

$$-m^* + \log_2 p^* \le -mc \tag{5}$$

where $c = \log_2(\frac{4}{3})$

• Therefore, the total mistakes made by the algorithm are bounded by:

$$m \le \frac{m^* + \log_2(\frac{1}{p^*})}{c} \tag{6}$$

Weighted majority using prior:

- No dependence on the number of expert N
- Because of prior, infinite number of experts are possible (except for the weight update)
- If you see "log n" where n is some discrete set of experts, think hidden uniform distribution
- Every learning algorithm has a prior, the prior for the Weighted Majority is all experts are equally good $(p_i = \frac{1}{N})$
- Priors in hypothesis space correspond to weights on experts

1.2 General Weighted Majority Update

- Bayes' Rule is a special case of weighted majority
- Predict:
 - Choose expert e_i in proportion to $\frac{w_i}{\sum_i w_j}$
 - Predict the same as what expert e_i predicts
- Receive Loss: $l_t(i)$
- Update Weights:
 - $w_i^{t+1} = w_i^t e^{-\alpha l_t(i)}$

or, use first term of Taylor Series expansion:

- $w_i^{t+1} = w_i^t(1 \alpha l_t(i))$ shows that Bayes Rule has no regret properties
- Expert e_i 's prediction is a probability distribution: $p_i(y)$

Figure 1: Graphic model of BLR

2 Bayes' Linear Regression

- θ = weight vector
- $x_t = \text{set of features at every timestep}$
- y_t = true prediction of outcome

We want to derive how to update our representation given a series of data $D = \{x, y\}$ up to timestep t and x_{t+1} , the probability of an observation \tilde{y}_{t+1} is

$$p(\tilde{y}_{t+1}|x_{t+1}, D) = \int p(\tilde{y}_{t+1}|x_{t+1}, D, \theta) \cdot p(\theta|D) d\theta$$

$$\tag{7}$$

$$= \int p(\tilde{y}_{t+1}|x_{t+1},\theta) \cdot p(\theta|D)d\theta \tag{8}$$

In BLR, the prior of the weight vector θ is a Gaussian where $\theta \sim N(\mu_0, \Sigma_0)$.

$$p(\theta) = \frac{1}{z} \exp\{-(\theta - \mu_0)^T \Sigma_0^{-1} (\theta - \mu_0)\}$$
(9)

This is called the Moment Parameterization of a Guassian, where Σ_0 is positive-definite and symmetric.

The Natural Parameterization is given by:

$$p(\theta) = \frac{1}{z} \exp\{J_0^T \theta - \frac{1}{2} \theta^T P_0 \theta\}$$
(10)

where

$$P_0 = \Sigma_0^{-1}$$
 (11)

$$J_0 = P_0 \mu_0 \tag{12}$$

We can calculate $p(\theta|D)$ recursively using the Bayes' Theorem

$$p(\theta|D) = \frac{1}{z}p(y_t|\theta, D)p(\theta|D)$$
(13)

where we know the likelihood $p(y_t|D, \theta) = p(y_t|x_t, \theta)$ is given by a Gaussian $\mathcal{N}(\theta^T x_t, \sigma_t^2)$

$$p(y_t|x_t, \theta) = \frac{1}{z} \exp\{\frac{-(\theta^T x_t - y_t)^2}{2\sigma^2}\}$$
(14)

The updating rule for $p(\theta|D)$ at timestep t is given by multiplication of two exponential functions. Adding the exponent of the prior to that of the likelihood yields

$$-\frac{1}{2\sigma^2} \left(\theta^T x_t - y_t\right)^2 + J_{t-1}^T \theta - \frac{1}{2} \theta^T P_{t-1} \theta \tag{15}$$

collecting terms to find updates J_t and P_t :

$$= -\frac{1}{2\sigma^{2}} \left(\theta^{T} x_{t} x_{t}^{T} \theta - 2\theta^{T} x_{t} y_{t} + y_{t}^{2} \right) + J_{t-1}^{T} \theta - \frac{1}{2} \theta^{T} P_{t-1} \theta$$
(16)

$$= \left(\frac{x_t^T y_t}{\sigma^2} + J_{t-1}^T\right)\theta - \frac{1}{2}\theta^T \left(\frac{x_t x_t^T}{\sigma^2} + P_{t-1}\right)\theta - \frac{y_t^2}{2\sigma^2}$$
(17)

Since this all happens in the exponent of an exponential function, the constant y_t^2/σ^2 -term can be shifted into the regularizing constant z. Thus, the update rules for J_t and P_t are

$$J_t = \frac{y_t x_t}{\sigma^2} + J_{t-1} \tag{18}$$

$$P_t = \frac{x_t x_t^T}{\sigma^2} + P_{t-1} \tag{19}$$

- 1. In a gaussian model, a new datapoint <u>always</u> lowers the variance this downgrading of the variance does not always make sense
- 2. If you believe there are outliers, this model won't work for you
- 3. The variance is not a function of y_t . The precision is only affected by input not output. This is a consequence of having the same σ (observation error) everywhere in space.