
Statistical Techniques in Robotics (16-831, F10) Lecture #16 (Thursday October 14th)

Bayesian Linear Regression (BLR) Part 1

Lecturer: Drew Bagnell Scribe: Heather Knight, Xinjilefu 1

1 Bayes’ Online Learning with a Prior

1.1 Standard Weighted Majority with a Prior

• Numer of experts: N

• Prior: pi (pi ≥ 0 and
∑

i pi ≥ 1)

• Set initial non-uniform weights to each expert: w1
i = Npi

• Each expert makes prediction yi ∈ {0, 1}

• for t = 1, · · · , T

Predict:

• Predict 1 if ∑
yi=1

wti ≥
∑
yi=0

wti (1)

• else, Predict 0

Update:

• If expert ei made a mistake, wt+1
i ← 1

2w
t
i

Analysis of Algorithm:

• Total weights of the experts will decrease over time with mistakes W =
∑

iwi

• Weight of the best expert w∗ ≤W

• m is the total number of mistakes predicted by the algorithm

• m∗ are the number of mistakes made by the best expert:

w∗ = 2−m
∗
Np∗ (2)

1Some content adapted from previous scribes: Kevin Lipkin, Alvaro Collet-Romea, Laura Lindzey and Hans
Pirnay
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• The total weight W is at most

W ≤ N
(

4

3

)−m
(3)

• Thus, since w∗ ≤W

2−m
∗
Np∗ ≤ N

(
4

3

)−m
(4)

−m∗ + log2 p
∗ ≤ −mc (5)

where c = log2(
4
3)

• Therefore, the total mistakes made by the algorithm are bounded by:

m ≤
m∗ + log2(

1
p∗ )

c
(6)

Weighted majority using prior:

• No dependence on the number of expert N

• Because of prior, infinite number of experts are possible (except for the weight update)

• If you see “log n” where n is some discrete set of experts, think hidden uniform distribution

• Every learning algorithm has a prior, the prior for the Weighted Majority is all experts are
equally good (pi = 1

N )

• Priors in hypothesis space correspond to weights on experts

1.2 General Weighted Majority Update

• Bayes’ Rule is a special case of weighted majority

• Predict:

– Choose expert ei in proportion to wi∑
j wj

– Predict the same as what expert ei predicts

• Receive Loss: lt(i)

• Update Weights:

– wt+1
i = wtie

−αlt(i)

or, use first term of Taylor Series expansion:

– wt+1
i = wti(1− αlt(i))

shows that Bayes Rule has no regret properties

• Expert ei’s prediction is a probability distribution: pi(y)
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Figure 1: Graphic model of BLR

2 Bayes’ Linear Regression

• θ = weight vector

• xt = set of features at every timestep

• yt = true prediction of outcome

We want to derive how to update our representation given a series of data D = {x, y} up to timestep
t and xt+1, the probability of an observation ỹt+1 is

p(ỹt+1|xt+1, D) =

∫
p(ỹt+1|xt+1, D, θ) · p(θ|D)dθ (7)

=

∫
p(ỹt+1|xt+1, θ) · p(θ|D)dθ (8)

In BLR, the prior of the weight vector θ is a Gaussian where θ ∼ N(µ0,Σ0).

p(θ) =
1

z
exp{−(θ − µ0)TΣ−1

0 (θ − µ0)} (9)

This is called the Moment Parameterization of a Guassian, where Σ0 is positive-definite and sym-
metric.

The Natural Parameterization is given by:

p(θ) =
1

z
exp{JT0 θ −

1

2
θTP0θ} (10)

where

P0 = Σ−1
0 (11)

J0 = P0µ0 (12)

We can calculate p(θ|D) recursively using the Bayes’ Theorem

p(θ|D) =
1

z
p(yt|θ,D)p(θ|D) (13)

3



where we know the likelihood p(yt|D, θ) = p(yt|xt, θ) is given by a Gaussian N (θTxt, σ
2
t )

p(yt|xt, θ) =
1

z
exp{−(θTxt − yt)2

2σ2
} (14)

The updating rule for p(θ|D) at timestep t is given by multiplication of two exponential functions.
Adding the exponent of the prior to that of the likelihood yields

− 1

2σ2
(
θTxt − yt

)2
+ JTt−1θ −

1

2
θTPt−1θ (15)

collecting terms to find updates Jt and Pt:

= − 1

2σ2
(
θTxtx

T
t θ − 2θTxtyt + y2t

)
+ JTt−1θ −

1

2
θTPt−1θ (16)

=

(
xTt yt
σ2

+ JTt−1

)
θ − 1

2
θT
(
xtx

T
t

σ2
+ Pt−1

)
θ − y2t

2σ2
(17)

Since this all happens in the exponent of an exponential function, the constant y2t /σ
2-term can be

shifted into the regularizing constant z. Thus, the update rules for Jt and Pt are

Jt =
ytxt
σ2

+ Jt−1 (18)

Pt =
xtx

T
t

σ2
+ Pt−1 (19)

1. In a gaussian model, a new datapoint always lowers the variance - this downgrading of the
variance does not always make sense

2. If you believe there are outliers, this model won’t work for you

3. The variance is not a function of yt. The precision is only affected by input not output. This
is a consequence of having the same σ (observation error) everywhere in space.
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