
Statistical Techniques in Robotics (16-831, F10) Lecture #19 (Tuesday October 26)

Kalman Filtering (part 1)

Lecturer: Drew Bagnell Scribe: Kiho Kwak, Siddharth Mehrotra

Gauss Markov Filter

Consider X1, X2, ....Xt, Xt+1 to be the state variables and Y1, Y2, ...Yt, Yt+1 be the sequence of
corresponding observations. As in Hidden Markov models, conditional independencies (see Figure
1) dictate that past and future states are decorrelated given the current state, Xt at time t. For
example, if we know what X2 is, then no information about X1 can possibly help us to reason
about what X3 should be.

Xt+1XtX2X1 - - - - - - - - - - - - - . . .

Yt+1YtY2Y1 . . .

Figure 1: The Independence Diagram of a Gauss-Markov model

The update for state variable Xt+1 is given by:

Xt+1 = AXt + ε

where,
ε ∼ N(0, Q)

⇒ Xt+1|Xt ∼ N(AXt, Q)

The corresponding observation Yt+1 is given by equation:

Yt+1 = CXt+1 + δ

where,
δ ∼ N(0, R)

⇒ Y0 ∼ N(µ0, ε0)

Each component is defined as follow:

• At: Matrix (nxn) that describes how the state evolves from t to t-1 without controls or noise.

• Ct: Matrix (kxn) that describes how to map the state Xt to an observation Yt.
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• εt, δt: Matrix (nxn) Random variables representing the process and measurement noise that
are assumed to be independent and normally distributed with covariance Rt and Qt respec-
tively.

Lazy Gauss Markov Filter

Motion Model (Prediction step):

Before the observation is taken:
Xt+1 ∼ µ−t+1 = Aµt

Proof:

E[Xt+1] = E[AXt + ε]

⇒ E[Xt+1] = E[AXt] + E[ε]

since variance of ε is 0,
⇒ E[Xt+1] = AE[Xt] = Aµt

Variance,
Σ−t+1 = E[Xt+1 ∗Xt+1

T ]

⇒ Σ−t+1 = E[(AXt + ε)(AXt + ε)T ]

= E[(AXt)(AXt)
T ] + E[εterms]

= AE[(Xt)(Xt)
T ]AT + E[εterms]

⇒ Σ−t+1 = AΣtA
T + E[εterms]

E[εterms] is equal to the variance of ε which is Q.
Therefore Motion Update becomes:

µ−t+1 = Aµt

Σ−t+1 = AΣtA
T +Q

Observation Model (Correction step):

For the observation model Natural parameterization is more suitable as it involves multiplication
of terms. When, Y is the corresponding observation for state variable X, the model equation in
terms of Natural Parameters J and P is given by,

e(J
−TX− 1

2
XTPX) ∗ e−

1
2
(Y−CX)TR−1(Y−CX)

⇒ e−
1
2
[−2Y TR−1CX+XTCTR−1CX+Y TR−1Y ]

The last term is a constant with respect to X, so it goes into the marginalization term.
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⇒ e−
1
2
[−2Y TR−1CX+XTCTR−1CX]

Therefore the Observation Update is:

J+ = J− + (Y TR−1C)T

P+ = P− + C−1R−1C

This form is useful when there are large number of motion and observation updates.
Lazy Gauss Markov can be expressed in two forms:

• When expressed in terms of moment parameters µ and Σ acts as Kalman Filter.

• When expressed in terms of natural parameters J and P acts as Information Filter.

Observation Update in terms of moment parameters µ and Σ:(
Xt

Yt

)
∼ N

( (
µXt

µYt

) (
ΣXX ΣY X

ΣXY ΣY Y

) )
Observation Update:

µX|Y = µX + ΣXY Σ−1Y Y (Y − µY )← (1)

ΣX|Y = ΣXX − ΣXY Σ−1Y Y ΣY X ← (2)

ΣXY Σ−1Y Y is Kalman gain, Kt and (Y − µY ) is called the Innovation Term.

We know,
µY = CµX

ΣY Y = R+ CΣXXC
T

Therefore, we have to find out ΣXY to calculate the remaining terms in equation 1 and 2.
By definition,

ΣXY = E[(X − µX)(Y − µY )T ]

= E[(X − µX)(Y − CµX)T ]

However, Y = CX + δ with δ having 0 mean and independent of all other observations.

ΣXY = E[(X − µX)(X − µX)T ]CT

⇒ ΣXY = ΣXXC
T

Putting, these values in equations 1 and 2,

µX|Y = µX + ΣXXC
T (R+ CΣXXC

T )−1(Y − CµX)

ΣX|Y = ΣXX − ΣXXC
T (R+ CΣXXC

T )−1CΣXX

3



Figure 2: The Kalman filter algorithm

Figure 3: Illustration of Kalman filters: (a) initial belief, (b) a measurement (in bold) with the
associated uncertainty, (c) belief after integrating the measurement into the belief using the Kalman
filter algorithm, (d) belief after motion to the right (which introduces uncertainty), (e) a new
measurement with associated uncertainty, and (f) the resulting belief.
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