Statistical Techniques in Robotics (16-831, F10) Lecture #28 (November 30, 2010)

How to apply Machine Learning

Lecturer: Drew Bagnell

Scribe: Scott Satkin

- 1. Plot your data
 - Histogram each feature
 - Scatter plot 2D/3D pairs or triplets of data
 - Perform PCA and scatter plot projected data
 - Unbalanced classes
 - (a) Weight loss function or gradient
 - (b) Upsample (duplicate data)
 - Downsides: overfitting and computational overhead
 - (c) Downsample ("costing")
 - Downside: doesn't use all the data
- 2. Your hold-out data is sacred
 - Split data into training, validation and test sets. Be cautious of trajectory data (sequential information) or groupable data (partial exchangability, *e.g.*: different scenes or locations).
- 3. Cris Dima's rule:
 - "Always start by overfitting." (Get an upper bound on performance)
- 4. More data is better
- 5. Understand what features matter
 - Too many features
 - Computational problems
 - Overfitting problems
 - Ablative analysis
 - Remove features one at a time and see if performance drops and iterate.
 - Backwards or forwards greedy (*e.g.*: Boosting)
 - Analysis:
 - * Greedy: $F_1 G_{\infty}(\log d) \sqrt{T}$ Not good for sparse features.
 - * Alternative: $F_2 G_2 \sqrt{T}$
 - $\sum |w_i| \le F_1 \subset F_2$
- 6. Never underestimate the power of a linear predictor (Linear SVM, Logistic Regression, Linear Regression...).

- 7. Never underestimate the power of "well tuned" Gradient Descent. (Nelder-Mead if no derivatives).
 - Normalize features [-1, 1]
 - Normalize standard deviations
 - Normalize each feature vector
 - Randomize data-points
- 8. Understand Overfitting vs. Underfitting
 - Overfitting
 - Test on development set
 - Regularize more
 - Feature selection
 - Get more data
 - Underfitting
 - More features
 - More sophisticated classifier
 - Less regularization
 - Kernelize or boost
 - Optimize better
- 9. Don't buy the hype!
 - Rich Caruana¹ papers
 - SVM
 - Random forests ("Random Kitchen Sinks")
 - ANN (often 2nd best option)
- 10. Building Large Learning Systems
 - Premature statistical optimization (spend time on the parts that matter)
 - Unit test learning code

¹http://www.cs.cornell.edu/~caruana/