
Statistical Techniques in Robotics (16-831, F10) Lecture#05 (Wednesday, September 14)

Mapping

Lecturer: Drew Bagnell Scribe: Nathan Brooks1

1 Occupancy Mapping

When solving the localization problem, we had a map of the world and tried to find the position of
the robot in it. Now we will solve the opposite problem: given the position of the robot (perhaps
through some sensor such as GPS), find the map of the world. Similar to localization, we will solve
the mapping problem as a filtering problem.

We need two components to solve this filtering problem: a state and a measurement model. The
state is the map of the world which we are trying to find. For example, it could be a pixelized
grid of cells or a map of landmarks. The measurement model is p(zt|m, lt), or the probability of
making an observation zt given a map m and a location on the map lt. We do not need to concern
ourselves with the robot’s controls since we have the position of the robot.

For our first solution to the mapping problem, we will partition the world into cells, with each
being one of two states: filled or empty. The individual grid cells are labeled mi, and ~m is the
vector of all grid cells. Unfortunately, the curse of dimensionality prevents us from filtering ~m,
since there are 2|~m| possible states. If we filter each cell independently, assuming that they are in
fact independent, we can reduce the complexity to 2|~m|. In truth, this is a very bad assumption
to make, but it is practical. We then reconstruct the entire map from the marginal probability of
each cell.

This is called “occupancy mapping”.

1.1 Derivation

Let Xi represent the state of a grid cell mi. The state is either x, meaning filled, or x̄, meaning
empty. We look at the probability that a cell is filled given the measurements, starting with a
Bayesian filter.

p(x|z1:t) =
p(zt|x, z1:t−1)p(x|z1:t−1)

p(zt|z1:t−1)

Now we will make the Markov assumption that p(zt|x, z1:t−1) = p(zt|x).

p(x|z1:t) =
p(zt|x)p(x|z1:t−1)

p(zt|z1:t−1)

However, this is totally bogus! This is a statement about a single cell, but the observation does
not depend on just a single cell. This is detailed in Section 1.2.

1Some content adapted from previous scribes: Brian Coltin and Mehmet R. Dogar

1

We expand the equation once again using Baye’s rule to get

p(x|z1:t) =
p(x|zt)p(zt)

p(x)

p(x|z1:t−1)
p(zt|z1:t−1)

Now p(x|z1:t) is based on the inverse sensor model, p(x|zt), instead of the familiar forward model
p(zt|x). The inverse sensor model specifies a distribution over the (binary) state variable as a
function of the measurement zt. A sensor model for a laser scanner device might look like Figure 1,
where zt is pass-through / hit information.

Using the same proof, we can derive a matching update rule for p(x̄|z1:t):

p(x̄|z1:t) =
p(x̄|zt)p(zt)

p(x̄)

p(x̄|z1:t−1)
p(zt|z1:t−1)

.

Next, we divide the two update rules.

p(x|z1:t)
p(x̄|z1:t)

=
p(x|zt)
p(x̄|zt)

p(x̄)

p(x)

p(x|z1:t−1)
p(x̄|z1:t−1)

p(zt|z1:t−1)
p(zt|z1:t−1)

p(x|z1:t)
p(x̄|z1:t)

=
p(x|zt)
p(x̄|zt)

p(x̄)

p(x)

p(x|z1:t−1)
p(x̄|z1:t−1)

=
p(x|zt)
p(x)

p(x̄)

p(x̄|zt)
p(x|z1:t−1)
p(x̄|z1:t−1)

Now we have a recursive update rule. If the probability of x̄ decreases with the observation zt, then
p(x̄) > p(x̄|zt), which causes the belief on x to increase relative to x̄.

Next, we take the log of this update rule to find the log odds of the belief the square is filled over
the belief it isn’t filled, which we label lt(x). Using the log odds reduces numerical errors from
multiplying minuscule floating point numbers.

log
p(x|z1:t)
p(x̄|z1:t)

= log
p(x|zt)
p(x̄|zt)

p(x̄)

p(x)

p(x|z1:t−1)
p(x̄|z1:t−1)

lt(x) = log
p(x|zt)
p(x̄|zt)

+ log
p(x̄)

p(x)
+ lt−1(x)

For this update rule, we need only to specify p(x|zt), the inverse sensor model, and p(x), the prior.
p(x̄|zt) and p(x̄) are the complements of these two terms. Note that the inverse sensor model must
respond to updates to the prior: consider section (1) in Figure 1.

1.2 Problems with the Markov Assumption

At the beginning of this derivation we used the Markov assumption to claim that p(zt|x, z1:t−1) =
p(zt|x). This would have been reasonable had x represented the state of the complete map. However,

2

Figure 1: A sample sensor model for a laser scanner device which provides the probability a grid
cell is occupied given a sensor reading. Grid cells in (1) would have probability equal to the prior,
grid cells in (2) would have a low probability and grid cells in (3) would have a high probability.

x represents the state of a single grid cell. The Markov assumption in this context doesn’t make
much sense: we can’t say that an observation zt is independent of all prior observations given only
the state of a single cell. Figure 2 shows an example using a wide laser beam where this Markov
assumption fails.

Figure 2: The problem with the standard occupancy grid mapping algorithm in Chapter 9.2: For
the environment shown in Figure (a), a passing robot might receive the (noise-free) measurement
shown in (b). The factorial approach maps these beams into probabilistic maps separately for each
grid cell and each beam, as shown in (c) and (d). Combining both interpretations yields the map
shown in (e). Obviously, there is a conflict in the overlap region, indicated by the circles in (e).
The interesting insight is: There exist maps, such as the one in diagram (f), that perfectly explain
the sensor measurement without any such conflict. For a sensor reading to be explained, it suffices
to assume an obstacle somewhere in the cone of a measurement, and not everywhere.

3

1.3 Limitations of Occupancy Mapping

In occupancy grid mapping every grid cell is one of two states: filled or empty. But in some
situations it makes sense for a cell to be partially filled. This may occur when only part of the
grid cell is filled and the rest is empty, or when the objects that “fill” the grid cell have special
characteristics: we may want a grid filled with vegetation to be “less filled” than a grid filled with
a solid rock.

Furthermore, occupancy grids have trouble dealing with semi-transparent obstacles such as glass
and vegetation. These obstacles may return hits to the laser rangefinder about half of the time, but
eventually the occupancy grid will converge to either filled or not filled, both of which are incorrect.

2 Density Mapping

To address the above problems, we use a density filter where the state x ∈ [0, 1] is the probability
a beam passes through rather than a binary filled / empty state. Assuming that a beam returns
with a probability x according to a Bernoulli distribution, we model this probability using a Beta
distribution. If α is the number of beams that pass through and β is the number of beams that
hit, the most probable value of a cell’s density is

α

α+ β

and we use this as the value in the density grid. A comparison between occupancy mapping and
density mapping highlighting this difference can be seen in Figures 3 and 4.

Figure 3: A map produced using an occupancy mapping technique. Regions in red indicate glass
walls which are indicated as being either fully occupied or non-occupied.

Note that density grids make the same flawed Markov assumption as occupancy grids, but do not
assume the cells can only be completely full or completely empty. To further take advantage this
partial occupancy model, the sensor model seen in Figure 1 could be modified so that sensor model
returns for areas near borders in the model are “blurred.“

4

Figure 4: A map produced using a density mapping technique. Regions in red indicate glass walls
which are indicated as having partial returns.

5

