
Statistical Techniques in Robotics (16-831, F10) Lecture#10 (Thursday September 23)

General Weighted Majority, Online Learning as Online Optimization

Lecturer: Drew Bagnell Scribe: Nathaniel Barshay1

1 Generalized Weighted majority

1.1 Recap

In general online learning, we cannot hope to make guarentees about loss in any absolute sense.
Instead, we use the notion of regret R to compare the loss of our algorithm (alg) against that of
the best expert (e?) from some family of experts. We thus define regret as:

R =
∑
t

lt(alg)− lt(e∗) (1)

The first of such algorithms analyzed was “Weighted Majoriy”, which works on 0/1 loss, and
achieves a number of mistakes m bounded by:

m ≤ 2.4(m∗ + logN) (2)

where N is the number of experts and m∗ is the number of mistakes the best expert in retrospect
makes over the entire time horizon.

Next we looked at “Randomized Weighted Majority”, which is similar to WM but uses a weighted
draw (rather then a weighted average), to make a prediction at a given timestep, and also introduces
a learning rate β.

1.2 The Master Learning Algorithm: Generalized Weighted Majority

The RWM algorithm mentioned above assumes a binary loss function: l ∈ {0, 1}. We now generalize
to any loss function with outputs in [0, 1] (keeping RWM as a special case). The algorithm is:

1. Set w0
i = 1.

2. At time t, pick an expert ei in proportion to its weight wi, and let that expert decide.

3. Adjust the expert weights:

wt+1
i ←− wtie−εlt(ei) ∀i

The bound on the regret of this algorithm becomes

E[R] ≤ ε
∑
t

lt(e
∗) +

1

ε
lnN (3)

1Content adapted from previous scribes: Anca Drăgan, Jared Goerner.

1

Ideally, we would like this algorithm to be what is called “No Regret”, defined as the average regret
over time converging to 0:

RT
T
→ 0 (4)

To do so, we need to make sure that ε(T) decays in such a way that the regret grows less than
linearly as a function of T . Since l(e∗) ≤ 1 by definition, we have that

∑
t lt(e

∗) ∈ O(T). Therefore,
applying this to (3), we get:

E[R] ∈ O(εT +
1

ε
lnN) (5)

Setting ε = 1√
T

, we get that

E[R] ∈ O(
√
T +
√
T lnN) (6)

This grow sublinearly in T , thus the ratio in (4) tends towards 1√
T

, and we have shown a no regert

algorithm.

Of course, this requires knowing T beforehand, it turns out one can also achieve no regret (via a
harder proof) by varying ε with time:

εt =
1√
t

.

Note: This is the point where Drew says that this algorithm can solve any problem in the universe.
For more information on General Weighted Majority, refer to the original paper by Arora et.al[1].

This algorithm has many suprising applications: computational geometry, Adaboost (where the
experts are the data points), and even Yao’s XOR lemma (see [2] for more details) in complexity
theory.

1.3 Application: Self Superfized Learning

Suppose we have a robot (driving in 1-dimension) that wants to learn to identify objects at long
range, given that it can identify objects perfectly at short range. Such a sensor model is quite
common, we have far less information (and thus classification is far more difficult) when objects
are far away. It might be desirable to learn such a model in a path planning setting.

Let us assume that every observed obstacle is either a Tree or a Giant Carrot (and thus the difficulty
of classification is quite understandable). The formal online learning is as follows: we get features
(from an object at range) and decide a class (Tree/Carrot) from the features available, then we
drive close to the object and the world gives us the true classification. We will use 0/1 Loss (0 if
correct, 1 if incorrect). Almost any family of classifiers can be used for our set of experts (decision
trees, linear classfier). However, we must discretize the parameters of such learners to keep the
number of experts finite.

2

1.4 Example: Linear Classifiers

The general form of a binary linear classifier is

θT f ≥ 0⇒ 1

θT f < 0⇒ −1

Here, f is a feature vector and θ is the vector of weights. Note that if we assert ||θ|| = 1, then
theta essentially has only d− 1 parameters, since the last is redundant (and each θi ∈ [−1, 1]).

In order to have a finite family of experts, we might discretize each θi into b levels, and have an
expert for each combinations of θi. In this case we have N = (b − 1)d, and we can run GWM
verbatim.

Plugging the number of experts into (3), we get that:

E[R] ≤ ε
∑
t

lt(e
∗) +

1

ε
ln
(
O(bd)

)
= ε

∑
t

lt(θ
∗) +

1

e
O(d ln(b)) (7)

Therefore, the regret scales linearly in the dimension of the feature space. It turns out it is generally
true that we need O(n) samples for a linear classifier (When introducing the constant it becomes
about 10n).

This is great theoretically, but keep in mind we still need to track weights for each of O(bd) experts!
Thus the algorithm is only practical for small d (upper bound at about 4).

2 Online Learning as Online Optimization

Motivation: “In fact, the great watershed in optimization isn’t between linear and nonlinear, but
between convexity and nonconvexity”

Most importantly, if we use:

1. Convex sets of experts

2. Convex loss functions

then we may be able to solve our online learning problem efficiently in the realm of online opti-
mization.

2.1 What are Convex Sets and Functions?

A convex set is a set such that any linear combination of two points in the set is also in the set: if
A ∈ C,B ∈ C, then

θA+ (1− θ)B ∈ C (8)

For example, the perimiter of a circle is not convex, because a linear combiation of two points is a
chord, which passes through the enterior (which is not in the set). Examples of convex sets include:

3

• Unit ball in Rn under l2 norm. S = {||x|| ≤ R}

• Box in Rn. S = {||x||∞ ≤ R}

• General unit ball. S = {||x||i ≤ R i ≥ 1}

• Linear subspace

• Half space. S = {wtx ≤ b}

• Intersection of half spaces, I.E. polyhedron.

• Cone, I.E. all positive linear combinations of a set of vectors.

Convex functions are the functions for which the epigraph (the area above the curve) is a convex
set. Defined rigerously we have:

f(A)θ + (1− θ)f(B) ≥ f(θA+ (1− θ)B) (9)

This directly generalizes to Jensen’s inequality:

∑
i

θi = 1 =⇒ f (θ1x1 + · · ·+ θnxn) ≤
∑
i

θif(xi)

2.2 Subgradients

Convex functions have subgradients at every point in their domain. A subgradient ∇f(x) is a
subgradient at x if it is the normal to some plane that touches f(x) at x, and is below the rest of
f . In symbols:

f(y) ≥ f(x) +∇f(x)T (y − x) ∀y (10)

If a function is differentiable at a point, then it has a unique subgradient at that point. Furthermore,
convex functions are the max over all subgradients. This is an interesting property that will be
used later in the class, because the maximum of convex functions is convex.

Several key properties of convex functions follow:

• Any local minima is also a global minimum (not necessarily the unique global minimum).
This is easy to see, the subgradient at a local minima sets a lower bound on the functions
value.

• Local optimization never gets stuck (we can always follow a subgradient down, unless already
at a global min)

4

2.3 The Online Convex Programming Problem - Intro

Online Convex Programming was proposed by Martin Zinkevich[3] in 2003. It is framed in the
same context of time steps, loss function, experts and weighted majority, preserving all the same
qualities form WM, while being computationally feasible.

The idea is that the experts are elements of some convex set, and that the loss at time t is convex
over the set of experts and thus has a subgradient. At every time step, we need to predict an expert
xt and receive the loss lt(xt) and ∇lt(xt).

Example: for the case of the linear classifier, where the experts are xt = θt in some convex set, the
loss function could be

lt(θt) = (θTt ft − yt)2

where yt is the actual label for the data point ft, in {−1, 1}. This loss is convex and is in fact a
parabola in terms of θt.

The next lecture will formalize the Online Convex Programming Problem better, and explain its
applications to No Regret Portfolio creation.

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale, “The multiplicative weights update method: A
meta algorithm and its applications.” Technical report, The Princeton University

[2] O Goldreich, N Nisan, A Wigderson, “On Yao’s XOR-lemma”

[3] Martin Zinkevich, “Online Convex Programming and Generalized In

nitesimal Gradient Ascent”, ICML 2003

5

