
Statistical Techniques in Robotics (16-831, F11) Lecture#11 (Wednesday October 5)

Online Convex Programming

Lecturer: Drew Bagnell Scribe: Prateek Tandon1

1 Online Convex Programming Problems

We shall continue to develop the framework from last lecture of casting Online Learning Problems
as Optimization problems (and especially Convex Optimization Problems). Convex Optimization
Problems are a key framing choice since these problems have a structure that makes them easy to
solve.

1.1 Definition

Online Convex Programming was proposed by Martin Zinkevich in 2003. Problems are framed in
the same context of time steps, loss function, experts as the standard weighted majority algorithm.
Algorithms for Online Convex Programming preserve many of the same qualities of the weighted
majority algorithm while being computationally tractable. An online convex programming problem
consists of:

• A set of experts that are elements of some convex set.

• A loss function lt(xt) that is a convex over the set of experts

• The goal at each time step of predicting an expert wt to minimize the regret given by:

R(w) =
T∑
t=0

lt(wt)− lt(w∗). (1)

where wt is an expert and w∗ is the best expert in retrospect.

The instantaneous regret for some expert wt at time t is:

Rinst(w) = lt(wt)− lt(w∗) (2)

1.2 Convex Functions

Recall that a convex set is a set such that any linear combination of two points in the set is also in
the set: if A ∈ C,B ∈ C, then

θA+ (1− θ)B ∈ C (3)

1Some content adapted from previous scribes: Anca Dragan, Siyuan Feng
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A function is convex if its epigraph (the set of points on or above the graph of the function) is a
convex set.

A subgradient at x, ∇f(x), is a line below the entire function and is given by:

f(y) ≥ f(x) +∇f(x)T (y − x),∀y (4)

Figure 1: Examples of Subgradients

Convex functions have subgradients at every point in their domain. This property simply re-states
that for any point in the domain of the function the value of the function at that point needs to
be higher than the value of the subgradient line at the same point.

The subdifferential is the set of all subgradients at a point. Note that a function always has at
least one subgradient. If a function is nondifferentiable at a point then it has infinite subgradients
at that point. Convex functions are the max over all subgradients.

1.3 Bounding Instantaneous Regret

For our instantaneous regret, we have

lt(w
∗) ≥ lt(wt) +∇lt(wt)

T (w∗ − wt)

lt(wt)− lt(w∗) ≤ ∇lt(wt)
T (wt − w∗).

(5)

The left hand side is the instantaneous regret, and the right hand side is some linear function times
(wt − w∗). Thus our total regret will be bounded by

∑T
t=0∇lt(wt)

T (wt − w∗).

It is convenient that we have a linear bound on the instantaneous regret because linear functions
are generally hard to bound. This means we can easily bound loss functions that are much easier
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to bound than linear (i.e. convex functions). Finally, the bound tells us that we don’t need to know
the whole loss function to bound it - just the slopes!

1.4 Follow the Leader

The follow the leader algorithm suggested in the previous class might a decent starting point for
selecting experts at each time step.

Consider a game against nature on the real line between [0, 1]. In this game, you select a point
between 0 and 1 and nature hands you a loss function from which you can compute your loss.
Imagine choosing the boundary point 0. Then nature might assign you the linear loss function that
has minimum at 0 and maximum at 1. The ”follow the leader” algorithm would encourage you
to pick 1 as your next move. However on that move, nature decides to assign you the linear loss
function that has minimum at 1 and maximum at 0. So you decide to move 0 again to follow the
leader but nature again assigns a terrible loss function for you at 0. The net effect is that nature
makes you go back and forth from move to move and your regret gets really bad.

Figure 2: Follow the Leader is too aggressive and oscillates between 0 and 1 in this example.

This is an example of how the follow the leader can break down because it is too aggressive. In the
next section we see a more powerful algorithm to minimize regret.

1.5 Algorithm for projected online subgradient descent

This algorithm is a method to minimize the regret for a online convex optimization problem.

Line 5 projects ŵt+1 back into the convex set C. α in line 4 is the learning rate. Smaller α pays a
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Algorithm 1 Projected Subgradient Descent():

1: choose w0

2: for t = 1...T do
3: Incur loss l(wt) and receive any ∇lt(wt)
4: ŵt+1 ← wt − α∇lt(wt)
5: wt+1 ← Projc[ŵt+1]
6: end for

larger upfront cost but is more likely to converge and has a lower regret over time. α can also be
dependent on t. Note that the projection will not cause the loss to grow because it will bring ŵt+1

closer to any member of C and thus closer to the optimal expert w∗ too.

1.5.1 Carrot/Tree Example

We can cast a linear regression problem as an instance of using this algorithm. Recall from last
lecture our carrot/tree world where a robot must drive on 1D line to classify an obstacle that is
either a carrot or tree. The robot’s perception system logs at each time step a list of features such as
distance to obstacle and RGB values. As the robot gets closer its predictions approach the ground
truth. The robot will know the true label once it sees the obstacle up close. For this problem we
have a feature set at every time step [d,r,g,b] and the robot assigns a label to this feature set: 0 if
the obstacle is a carrot and 1 if the obstacle is a tree.

We can solve this problem by assigning the loss function:

lt = 1/2(wT f − yt)2 (6)

where wt are the weights we predict, f is the feature set and yt is the world handing us the true
label of the object. We pay cost lt when we find the true label of the obstacle yt from the world.

We use the update following update equation for our weights:

wt+1 = wt − α(wT f − yt) (7)

which is basically a step in gradient descent.

1.6 Regret bounds for projected subgradient descent

The distance between wt and w∗ at time t is defined as

D(wt, w
∗) = (wt − w∗)T (wt − w∗) (8)

Now we look at

D(wt+1, w
∗)−D(wt, w

∗)

= (wt − α∇lt(wt)− w∗)2 − (wt − w∗)2

= (zt − α∇lt(wt))
2 − z2t

= α2(∇lt(wt))
2 − 2α∇lTt (wt)zt,

(9)
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where zt = wt − w∗. If we sum all the terms over time, the intermediate terms will all cancel out
and leave us just D(wT , w

∗)−D(w0, w
∗).

=
∑
t

D(wt+1,w∗)−D(wt, w
∗)

= −2α
∑
t

(wt − w∗)∇lt + α2
∑
t

|∇lt|2

= D(wT , w
∗)−D(w0, w

∗)

≤ −2α
∑
t

(wt − w∗)∇lt + α2GT,

(10)

where |∇lt|2 ≤ G. Thus we have

2αRT ≤ 2α
∑
t

(wt − w∗)∇lt ≤ D(w0, w
∗)−D(wT , w

∗) + α2GT (11)

Sine the distance between wT and w∗ is always non negative, we can throw away the D(wT , w
∗)

term and still keep the inequality valid.

RT ≤
∑
t

(wt − w∗)∇lt ≤
D(w0, w

∗)

2α
+
αGT

2
≤ αGT

2
+
F

2α
, (12)

where F is the largest distance between any two experts in the set.

Suppose we set alpha =
√

F
GT , then the upper bound for total regret is bounded by

√
GTF , growing

sub linearly of T .

Note: For those from CS, we just did an amortized analysis.

2 Portfolio optimization

We want to invest in n different stocks given a set of investment weights wi s.t. wi ≥ 0 and∑
wi = 1. We also know the market returns ratios ri =

valueit+1

valueit
. So the daily increase in wealth is

wT
t rt, and the total wealth over time is mΠwT

t rt, where m is the total value of initial investment.
We want to maximize log ΠwT

t rt =
∑

logwT
t rt. We can use use the following algorithm:

• wi
0 = 1

n

• wi
t+1 = Proj[wi

t + α
rit∑
wj

t r
j
t

]

We shall compare the policy to a constantly rebalancing portfolio that maintains a set constant
investment ratios. A key question for next time is: if we get off a simplex, how can we get back
on?
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