
Statistical Techniques in Robotics (16-831, F10) Lecture#12 (Monday October 10)

Random fields for Ladar data and estimation

Lecturer: Drew Bagnell Scribe: Jonathan Butzke1

1 Portfolio Optimization Continued - No Regret Portfolio

Note: Do not actually use the investment algorithm we discussed in the last lecture - you will lose
money!

Recall the algorithm from last time: Start with

w0 ←
1

n
(1)

Then

wt+1 ← Proj[wt +
αrt

wT
t rt

] (2)

Remember, we control the wt, the objective function is rit (the return of the ith investment during
timestep t) and this is no regret with respect to a constant weight w? (This means it is a constantly
rebalanced portfolio, after every timestep, the assets are moved around such that their starting
weight each day is the same - it is not the portfolio where you pick the best asset each day from
some oracle).

So for each day wT rt is the total return for that day and your total return at the end is
∏

tw
T
t rt.

We will optimize
∑

logwT
t rt. (As an aside, it seems people actual care about money in a ”sort of”

logarithmic way, but we are really doing this because it is convenient mathematically).

On day 1, buy at some arbitrary set of weights as in equation 1 where w0 can be set using any a
priori knowledge available.

Then for each day calculate

∇` = rt

wT
t rt

(3)

wt+1 = wt + α∇` (4)

by restricting r such that rmin ≤ rt ≤ rmax we get

α =

√
F

TG
=

√
2

TN rmax
rmin

(5)

How can this go wrong?

1Notes based on work from previous scribes: Javier Hernandez Rivera and Heather L. Jones

1

1. We made a no junk bond assumption

rmin ≤ rt ≤ rmax (6)

This assumption fails if there is a catastrophic market crash.

2. How do you do the projection?

If wi ≤ 0, then wi = 0. Now everything doesn’t sum to 1. To do the projection correctly, sort the
weights, smallest to largest. Then look at

∑
imax(wi − a, 0)) = 1, and find an a such that this is

true.

Gain function: log(wT r) (take the negative to get the loss)

L2 Projection (minimize squared difference between point before and after projection)

R←
√
G ∗
√
T ∗

√
D(w0, w∗) (7)

3. Transaction costs are not accounted for

4. Moving the market - if you put a lot of money in, you affect the price. We had regret∑
t lt(wt)− lt(w∗). If these losses are a function of decisions you made, then it doesn’t mean a

lot if you have small regret (you just made the best expert perform worse). This shows up in other
robotics applications too: the robot may see something different because it makes actions based on
what it sees. For example, the robot decides that a green thing far away is bad and wants to stay
as far away from it as possible. Then the robot never learns that maybe green isn’t so bad.

All these problems exist in every application of no regret. You’re still minimizing your regret, but
maybe you aren’t minimizing what you hoped you were minimizing. So, no regret is cool, but not
magic (ok, maybe a little magic).

Why is projection OK? When you project onto a convex set, you get closer to every point in the
convex set.

Rt ≤ 5lTt (wt − w∗) ≤ αG

2
+ [D(w̃t, w∗)−D(wt−1, w∗)] (8)

The term D(w̃t, w∗)−D(wt+1, w∗) is always positive (See Figure 1).

Not only does projection not hurt, it could help. We have to get D(w̃t, w∗) to go down - for this
we need the L2 distance, not L1. Even if the set is huge, no regret with respect to D(w0, w∗).

D() is the L2 distance. Mirror descent is for other D’s besides (w0 − w∗)2.

α =
√

F
GT , if you don’t know the horizon, use little t instead of T , αt instead of a constant α.

R ≤
√
FGT

This is a strongly convex function (bounded by a quadratic) - the quadratic has some steepness.

Every strongly convex function can be written as a convex function.

f(x) = g(x) + H
2 ∗ ||x||

2, (with f(x) strong)

2

Figure 1: Projection onto a convex set

Figure 2: Change in slope is bad

abx(x) + ||x||2

The market problem we just did does not have this property.

α = 1
Ht , and for this kind of function, R ≤ G

2H (1 + log(T)), where
∑ 1

T is bounded by log(T) -
notice no dependance on F, so regret grows only logarithmically with the number of time steps.

2 Markov Random Field Applications

2.1 Elevation Map from Laser Data

[Projected slides showing terrain as sensed from a plane]

The laser in this example has issues - sometimes it does not penetrate vegetation, and sometimes
it appears to go through the ground.

We know that a change in slope is bad for a robot on the ground (See Figure 2). We can represent
the ground as an MRF (See Figure 3). The blue nodes represent the height of the ground hi, and
the orange nodes represent the range readings, zi. The potential functions are defined as:

Φij = e−λ(hi−hj)
2

(9)

Ψi = e−σ(zi−hi)
2

(10)

3

…

… …… …

…

…

Di

Ďi

Reconstructed Range

Range Measurement Depth Measurement

Smoothness Prior

Figure 3: Markov Random Field for Range Sensing

where λ is a constant weight placed on the depth measurements.

Pr(h) =
1

Z

∏
i

Ψi

∏
i,j∈neighboringpairs

Ψij (11)

With Z as the normalizing factor.

Today: argmaxhPr(h|z)

Previously: hsample ˜ Pr(h|z), E[hi]

These two need not agree, but they will here because for a Gaussian distribution, mean = mode.

There is also a third thing (which we won’t ever do): argmaxhi
Pr(hi|z), (this is the max marginal

distribution)

Now take the log of today’s formulation:

log(Pr(h)) = C − λ
∑

(hi − hj)
2 − σi

∑
(zi − hi)

2

This is convex.

5i
lt
= −2λ

∑
j∈neighbori (hi − hj)− 2σ(zi − hi), where the superscript i indicates that the gradient

is with respect to hi.

After applying this, the terrain map [on projected slide] looks smoother.

An alternative way of writing this is:

4

min
x̄

(− logP (x̄|observations))→ min
x̄

∑
i

[γ(xi − hi,min)
2 + λ

∑
j∈Neighbors

(|xi − xj |)]

→ (
∑
i

2γ(xi − hi,min) + λ
∑
j

(sign(xi − xj))(γ − α)

where

sign(z) =

{
1 if z ≥ 0

−1 if z < 0

2.2 Bookshelf with Image and Laser (Depth) Data

The trick in this application is to realize that the image is higher resolution than the depth data.
We can use essentially the same MRF model as in Figure 3, but now the zt nodes only connect to
every third (or tenth, etc.) hi node, but there is a camera pixel for each hi node with color ci.

δ(color(r1), color(r2)) =
∑

(pi − pj)
2 for pixels piandpj .

From the equation we had before:
Φij = e−λ(hi−hj)

2
(12)

We now set λij = (constant) ∗ e−D(ci,cj).

2.3 Terrain Mapping for a Ground Robot

The objective in this problem is to estimate the height of the terrain observed with range sensors.
Let’s assume the set of heights can be described by a function Z = f(x, y) where Z = 0 corresponds
to the ground level. Figure 4 illustrates a MRF to solve this problem. Note that in this case, Z is
defined in 1D.

Similarly to the previous problem, we can define the potential functions as:

Ψ = e−(D̃i−Di)
2

(13)

Φ = e−wij(Di−Dj)
2

(14)

Moreover, we have the set of constraints ∀Di ≤ Ray heighti that require a projection function to
be satisfied. Note that the set of solutions is convex because it is defined with inequalities.

This assumes no reflections (a puddle could make the robot think there was a hole).

In this case, we get new heights at every time step, so we have a convex set that changes at every
time step. This is still OK, because the sequence of convex sets keeps getting smaller.

5

CRUSHERCRUSHERCRUSHERCRUSHER

Di

Ďi Height Measurement

Smoothness Prior

Z Earth shapeReconstructed Height

Height Measurement

Figure 4: Markov Random Field for Terrain Mapping

6

