
Statistical Techniques in Robotics (16-831, F11) Lecture #13 (Wednesday October 12th)

Learning by Constraints and SVMs

Lecturer: Drew Bagnell Scribe: Andrew Chambers1

We have seen that Online Convex Programming (OCP) has many applications, from optimizing
investment portfolios to inferring terrain supporting surfaces in front of robots. We shall now
explore “support vector” methods, which are OCP for learning. The connection will be made by:

• Thinking of data as (soft) constraints

• Turning these constraints into objective functions

1 Support Vector Applications

1.1 “Little Dog” walking robot

One example of a support vector application is crossing terrain with the robot Little Dog. At a high
level, a cost function can be defined that considers how long it takes the robot to cross the terrain
and how close it comes to tipping over. At the level of planning individual footsteps, though, such a
cost function does not apply. It can, in fact, be difficult to determine the cost function for footstep
planning.

One method for determining the cost function is to utilize human expertise. Since guessing the
cost function is hard, a human user is given two pieces of terrain for comparison with the option
of choosing which would be better for robot foot placement. An steep slope would be considered
expensive, while shallow convex divets, that can serve as stable footholds, would be cheap. A
cost function can then be generated from the learned data, over a few hundred examples, using
regression. Possible features in this particular example include terrain filter response, slope and
curvature, triangle of support, etc.

1.2 Sports Examples (College Football)

This technique for learning cost functions can be extended to other problems. For example, there are
continuous or discrete rankings of teams in sports. In football and basketball rankings are created
to decide which team might be ’better’, or more likely to win. Cost features can be generated for
two teams through their pairwise comparison.

Example features, which could be used to predict the outcome of a game, could include:

• Number of returning All-American players on the team

• Average points per game of the team

1Some content adapted from previous scribes: Chris Skonieczny, Lindsey Hines
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• Human ranking of the team determined by the Associated Press (AP) poll

• Booster club budget

• etc...

2 Implementation

For each example where one instance is judged to be preferable to another, a constraint can be
formed as wT fn ≤ wT fp where w is a vector of weights, f is a feature set, and the preferred and
not preferred instances are denoted by superscripts n and p, respectively.

Multiple constraints, indexed i = 1, ..., T , can then be compiled in the form:

wT fn1 ≤ wT f
p
1

wT fn2 ≤ wT f
p
2

...
wT fnT ≤ wT f

p
T

(1)

There are several issues, however, with the constraints as they are now written.

1. There may not be a set of weights that satisfy all of the constraints. The human trainer
may not have been consistent. (Eg. non-transitive ranking: wT f1 ≤ wT f2, wT f2 ≤ wT f3,
wT f3 ≤ wT f1)

2. There can be multiple solutions; weights can be scaled and still satisfy the constraints.

3. There is a trivial solution of w = 0. (Note: we don’t want to constrain ‖w‖ ≥ r, as this
results in a non-convex problem)

Maximum Margin Approach
Both issue 2 and issue 3 can be addressed with a maximum margin approach. By adding a con-
stant to the inequalities, one must not only satisfy them, but do so by a margin. In this case, we
have arbitrarily chosen the margin constant to be equal to the value 1. We can then attempt to
maximize the size of the margin as suggested, subject to all the constraints and ‖w‖2 ≤ 1. It is
equivalent, though, and simpler, to fix the margins to a constant value and minimize the weights.
The constraints can then be reformatted as follows:

Objective function: min||w||2, subject to:

wT fn1 ≤ wT f
p
1 - 1

wT fn2 ≤ wT f
p
2 - 1

...
wT fnT ≤ wT f

p
T - 1

(2)

Constraint Softening
Issue 1 can be addressed with the addition of a slack variable ξi, where ξi ≥ 0. If a judgment is
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wrong, the slack variable can be increased until the constraint is satisfied, though a price is paid
with an increase of the total cost. The objective function and constraints are now:

Objective function: min
w,ξ

(
λ

2
||w||2 +

T∑
i=1

ξi

)
, subject to:

wT fn1 ≤ wT f
p
1 - 1 + ξ1

wT fn2 ≤ wT f
p
2 - 1 + ξ2

...
wT fnT ≤ wT f

p
T - 1 + ξT

(3)

where lambda trades off cost of violating constraints vs. having high weights:
Smaller λ→ allows larger (growing) set of weights, longer to learn but violate less contraints.
Larger λ→ forces smaller (constrained) set of weights, learn initially faster.
Larger weights = smaller margin, and smaller weights = larger margin.

Note that we can also write each constraint in terms of the slack variable:

ξi ≥ wT∆fi + 1 where ∆fi = fni − f
p
i .

Online Support Vector Ranking
The maximum margin approaches discussed above (for either hard or softened constraints) minimize
an objective function quadratic in w (and ξ) subject to constraints linear in w (and ξ). This is
the classical setup of a quadratic programming problem (QP). In practice, solving such problems
using QP can take a considerable amount of time since the time scales cubically with the number
of constraints. We can, instead, turn it into an online problem, eliminating the constraints. The
resulting approach, called Support Vector Ranking, is easy to implement and very fast; it can also
be applied in an online setting, if required.

Considering again cases with conflicting constraints, we can define a bound on our slack variables ξi.
If a constraint is met within the margin, ξi is not needed and is equal to zero. If wT (∆fi) + 1 > 0,
where the judgement is wrong or not within the margin, ξi is required, but will never need to be
greater than ξi = wT (∆fi) + 1. At that point, the constraint is already met with margin, and any
further increase would only increase cost. The objective function can now be written as:

min
w

(
λ

2
||w||2 +

T∑
i=1

max(0, wT∆fi + 1)

)

or equivalently:

min
T∑
i=1

(
λ∗

2
||w||2 +max(0, wT∆fi + 1)

)

Where λ∗ = λ
T . We can drop the star notation and note that λ has absorbed T .

At each time step (i.e. for each training example), our loss function is now:

lt = λ
2 ||w||

2 +max(0, wT∆ft + 1)
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This is called the hinge loss, and is convex (in fact, it is strongly convex) and entirely unconstrained!
It is not differentiable, but subgradients exist everywhere. As can be seen in figure below, the
subgradient of the hinge loss can fall within one of three cases. When wT∆fi < −1 (corresponding
to correctly ranked examples, constraint i is satisfied with margin), the subgradient is λw. When
wT∆fi > −1 the subgradient is λw + ∆fi. The third case, wT∆fi = −1 can be placed in either of
the two previous cases, since there are multiple valid subgradients.

3 Online Support Vector Ranking Algorithm Outline

• Step 1: w∗
t+1 = wt − αtλwt (This step attempts to increase margin)

• Step 2: If a misranking occurred (or the constraint wasn’t satisfied by the margin),
wt+1 = w∗

t+1 − αt(fnt − f
p
t ), where we recall that p denotes the preferred instance, and n the

not-preferred instance)
Else,
wt+1 = w∗

t+1

• Projection is not required because there are no contraints left in the reformulated problem.

• Iterate - May need to pass through data multiple times and data order should be randomized.
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