
Statistical Techniques in Robotics (16-831, F11) Lecture #14 (Monday October 31th)

Support Vector Machines and Bayes Regression

Lecturer: Drew Bagnell Scribe: Carl Doersch 1

1 Linear SVMs

We begin by considering binary, linear classification. In this problem, we are trying to map elements
from our feature space into the set {−1, 1}. When we have two features, F1, F2 ∈ R, we can think
of the problem graphically. In the following figure, we represent the points with a label of 1 as O’s,
we the points with a label of −1 as X’s. We wish to find a linear decision boundary (a straight line)
that separates the points from each class. The decision boundary is shown as the dotted line.

X

X

X

X

O

O

O

O

F1

F2

Figure 1: Linear binary classification

To represent this notion mathematically, we denote the ith training point as fi, and the class of
this point as yi. The linear classification problem requires us to find a set of weights w such that:

∀i yiwT fi ≥ 0 (1)

Note that the decision boundary need not pass through the origin. We often use a dummy variable
F0 = c for constant c 6= 0, which allows us to use w0 as an offset.

One issue with this formulation of the problem is that it has a trivial solution. Specifically, if we
set all of our weights to 0, we will have yiw

T fi = 0 for all points. To address this issue, we modify

1Some content adapted from previous scribes: Alan Kraut, Robert Fisher, Heather Knight, Ben Xinjilefu, Kevin
Lipkin, Alvaro Collet-Romea, Gandalf, Laura Lindzey and Hans Pirnay

1

our constraints to be:
∀i yiwT fi ≥ margin (2)

This can have the added benefit of improving generalization. Once again, we can represent this
graphically. In the following picture, the space between the dotted line and the decision boundary
represents the margin.

X

X

X

X

O

O

O

O

F1

F2

Figure 2: Linear binary classification with margins

We further see that the magnitude of our weight vector does not matter, only the orientation affects
classification. Therefore we can restrict w to ||w||2 = 1. Taken together, this yields the following
formulation:

Maximize margin
Such that ∀i yiwT fi ≥ margin

||w||2 ≤ 1

We use ||w||2 ≤ 1 instead of ||w||2 = 1 to make sure that our problem remain convex. Note that
we do not include a bias term; we can incorporate a bias by simply adding a 1 at the end of each
input vector. This means we are regularizing the bias in this formulation of the SVM, though the
original SVM papers did not.

This problem is generally solved in an equivalent form that is easier to optimize, where we hold the
margin fixed and minimize the magnitude of the weights:

Minimize ||w||2
Such that ∀i yiwT fi ≥ 1

margin > 0

This last formulation is an example of a quadratic program, which we are able to solve efficiently.
Unfortunately, the hard margin SVM requires that the data be linearly separable, which is almost

2

never the case. To address this issue, we introduce a slack variable, ξ. The problem now becomes:

Minimize λ||w||2 +
∑
i

ξi

Such that yiw
T fi ≥ 1− ξi

ξi ≥ 0
margin > 0

There will be one slack variable ξi to correspond to each of the T data-points that we are considering.
Many SVM solvers further transform this optimization into a dual form, where the weight vector w
is written as a linear combination of the support vectors, and this linear combination is optimized
rather than optimizing w directly. This allows us to formulate nonlinear versions of the SVM, but
this is beyond the scope of the class.

1.1 Gradient Descent

To perform gradient descent, we first observe that ξ = max(0, 1−yiwT fi), because the slack variable
is 0 if this point is labeled correctly. This allows us to generate the loss function

lt = λ||w||2 + max(0, 1− ytwT ft) (3)

Our update for w is now as follows. If the output was correct by at least the margin, the only
contribution to the loss is the magnitude of w:

w ← w − 2αtλw (4)

And if the output for this time step was incorrect or not outside the margin (ξ > 0),

w ← w − 2αtλw + αtytft (5)

We note that this loss function is not minimizing the number of mistakes made by the algorithm. In
fact, solving this problem with a 0-1 loss function (which would minimize the number of mistakes)
is known to be NP-hard. We can visualize the difference between these loss functions with the
following figure, in which Z = wT fi:

Our loss function, the hinge loss function, is convex, while the mistake loss (0-1 loss) function is
not. However, we do see intuitively that the loss function we are using is the best “convexification”
of the NP-hard problem. In practice the convexified loss is more appropriate anyway, since we
generally want to minimize “how wrong” we are when we do mislabel a point.

1.2 Selecting αt

• First idea is to set αt proportional to 1√
t
.

• If we have T elements, each with a maximum value of F , the maximum gradient, G, is
√
TF .

This results in a regret that is R ≤
√
FGT .

• This is not as good as we could do.

3

0

1

Z 1

Hinge loss

Mistake loss

Figure 3: Loss functions

• Notice that lt is an extremely good convex function. It is a quadratic plus a convex function.
In the same way all convex functions lie above a line (a subgradient) from every point, lt lies
above a quadratic from every point.

• Specifically, if it is always the case that

f(y) ≥ f(x) +
H

2
(y − x)2 +∇fTx (y − x) (6)

then f(x) is said to be H-strongly convex.

• In this case lt is λ-strongly convex.

• If αt = G
Ht , then regret≤ G2

H (1+log t). log t is really good, and this learning rate and algorithm
is essentially the current best for this class of problem.

2 Bayes’ Linear Regression

In linear regression, the goal is to predict a continuous outcome variable. In particular, let:

• θ = parameter vector of the learned model

• xt ∈ Rn = set of features at every timestep, used for prediction

• yt ∈ R = true outcome

Then our model is as follows:

yt = θxt + εt

4

θ

y0 y1 y2 y3

x0 x1 x2 x3

Figure 4: Graphic model of BLR

where εt ∼ N (0, σ2) is noise that is independent of everything else. Thus the likelihood if θ is
known may be written:

p(yt|xt, θ) =
1

z
exp(θx(2σ2)−1)

In BLR, we maintain a distribution over the weight vector θ to represent our beliefs about what θ
is likely to be. The math is easiest if we restrict this distribution to be a Gaussian: θ ∼ N(µ0,Σ0).
This has the following form:

p(θ) =
1

z
exp{−1

2
(θ − µ0)TΣ−10 (θ − µ0)} (7)

This is called the moment parameterization of a Guassian. This is the most intuitive parameteri-
zation, but it is actually more computationally convenient to use the natural parameterization. In
the natural parameterization, the multiplication operation required in Bayes rule becomes a simple
sum:

p(θ) =
1

z
exp{JT

0 θ −
1

2
θTP0θ} (8)

where

P0 = Σ−10 (9)

J0 = P0µ0 (10)

Note that for these to be probability distributions, Σ0 must be positive-definite; otherwise the
distribution will have an infinite integral and cannot be normalized. It is also generally constrained
to be symmetric, as correlations between random variables are symmetric.

Recall that if we have a distribution over θ, and we recieve a new x̃t+1, we can compute the
distribution over ỹt+1 by integrating out θ

p(ỹt+1|xt+1, D) =

∫
p(ỹt+1|xt+1, D, θ) · p(θ|D)dθ (11)

=

∫
p(ỹt+1|xt+1, θ) · p(θ|D)dθ (12)

5

We want to derive how to update our estimate of θ given a series of data D = {x, y} up to timestep
t and xt+1. We can calculate p(θ|D) recursively using the Bayes’ Theorem:

p(θ|D) =
1

z
p(yt|θ,D)p(θ|D) (13)

where we know the likelihood p(yt|D, θ) = p(yt|xt, θ) is given by a Gaussian N (θTxt, σ
2
t)

p(yt|xt, θ) =
1

z
exp{−(θTxt − yt)2

2σ2
} (14)

The updating rule for p(θ|D) at timestep t is given by multiplication of two exponential functions.
Adding the exponent of the prior to that of the likelihood yields

− 1

2σ2
(
θTxt − yt

)2
+ JT

t−1θ −
1

2
θTPt−1θ (15)

collecting terms to find updates Jt and Pt:

= − 1

2σ2
(
θTxtx

T
t θ − 2θTxtyt + y2t

)
+ JT

t−1θ −
1

2
θTPt−1θ (16)

=

(
xTt yt
σ2

+ JT
t−1

)
θ − 1

2
θT
(
xtx

T
t

σ2
+ Pt−1

)
θ − y2t

2σ2
(17)

Since this all happens in the exponent of an exponential function, the constant y2t /σ
2-term can be

shifted into the regularizing constant z. Thus, the update rules for Jt and Pt are

Jt =
ytxt
σ2

+ Jt−1 (18)

Pt =
xtx

T
t

σ2
+ Pt−1 (19)

1. In a gaussian model, a new datapoint always lowers the variance - this downgrading of the
variance does not always make sense

2. If you believe there are outliers, this model won’t work for you

3. The variance is not a function of yt. The precision is only affected by input not output. This
is a consequence of having the same σ (observation error) everywhere in space.

6

