
Statistical Techniques in Robotics (16-831, F11) Lecture#16 (Monday November 07)

Lecture Topic

Lecturer: Drew Bagnell Scribe:Ammar Husain 1

1 Bayes’ Linear Regression

1.1 Review

Recall from the previous lecture our formulation of the Bayesian Linear Regression problem, with
the corresponding graphical model shown in Figure 1. The variables x0, ..., xt are our input feature
vectors. The weight vector is θ ∼ N (µθ,Σθ). Our prediction is based on:

yt ∼ N (θTxt, σ
2) = θTxt + ε, where ε ∼ N (0, σ2)

We need to compute P (θ|D), where D is all data x0, ..., xt and y0, ..., yt, so that we can make a
prediction for yt+1 by conditioning on θ as follows:

P (yt+1|D) =

∫
θ
P (yt+1|xt+1, θ)P (θ|D)δθ

Note: D can be dropped because /theta and xt tell you all you need to know.

Figure 1: Bayesian Linear Regression Model

1.2 Update Step

Recall from the previous lecture that we can write the weight vector in the natural parameterization:

θ ∼ Ñ (Jθ, Pθ) =
1

z
exp

(
−1

2
θTPθ + JT θ

)
We do the update step as follows (as derived in the previous lecture):

Jt+1 = Jt +
1

σ2
ytxt

Pt+1 = Pt +
1

σ2
xtx

T
t

1Some content adapted from previous scribes: Heather Justice, Kiho Kwak, Siddharth Mehrotra
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Notice that, due to the properties of Gaussians, the precision is always increasing for each new
data point (in other words, the variance never increases). Also notice that the update for P has
no dependence on yt (the variance depends only on inputs and not outputs); this model does not
account for surprises in the data! Gaussians don’t really have a good model for outliers. In this
model, if an outlier is observed, that will essentially shift the mean, and the algorithm will become
more certain about that new mean. In practice, you may want to have some sort of wrapper
function to detect and discard outliers from the data first (imagine if the data contained an outlier
10σ from the mean!).

1.3 Transfer to Moment Parameterization

Given the transfer rules to the moment parameterization

Σ = P−1

µ = P−1J

the moment parameterization after N timesteps is then

Σθ|D =

[
Σ−10 +

N∑
i=1

xix
T
i

σ2

]−1

µθ = Σθ|D ·

[
N∑
t=1

ytxt
σ2

]

=

[
Σ−10 +

N∑
i=1

xix
T
i

σ2

]−1
·

[
N∑
t=1

ytxt
σ2

]

Watch out for the different uses of the sigma symbol (variance versus summation)! Also note that
this assumes the initial µ0 = 0; if µ0 is nonzero, then the µθ update will be more complicated.

The complexity of this this computation is essentially cubed in the number of features. More
precisely, O(F 3 + TF 2), where F is the number of features and T is the number of data points.

1.4 Making Predictions

Given all data D up to timestep t and xt+1, the probability of an observation ỹt+1 is

p(ỹt+1|xt+1, D) =

∫
p(ỹt+1|xt+1, D, θ) · p(θ|D)dθ (1)

=

∫
p(ỹt+1|xt+1, θ) · p(θ,D)dθ (2)

We might expect that E[yt+1|D] = µTθ xt+1 since we know that E[θ] = µθ and we want θ such that
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yt+1 = θTxt+1. More formally, we can compute:

EP (θ|D)[yt+1|xt+1] = E[θTxt+1 + ε]

= E[θTxt+1] + E[ε]

= E[θ]Txt+1 + 0 (since that ε is independent of θ)

= µTθ xt+1

Notice that inference is exact for this model!

2 Gauss Markov Model

Consider X1, X2, ....Xt, Xt+1 to be the state variables and Y1, Y2, ...Yt, Yt+1 be the sequence of
corresponding observations. As in Hidden Markov models, conditional independencies (see Figure
1) dictate that past and future states are decorrelated given the current state, Xt at time t. For
example, if we know what X2 is, then no information about X1 can possibly help us to reason
about what X3 should be.

Xt+1XtX2X1 - - - - - - - - - - - - - . . .

Yt+1YtY2Y1 . . .

Figure 2: The Independence Diagram of a Gauss-Markov model

The update for state variable Xt+1 is given by:

Xt+1 = AXt + ε

where,
ε ∼ N(0, Q)

⇒ Xt+1|Xt ∼ N(AXt, Q)

The corresponding observation Yt+1 is given by equation:

Yt+1 = CXt+1 + δ

where,
δ ∼ N(0, R)

⇒ Y0 ∼ N(µ0, ε0)

Each component is defined as follow:
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• At: Matrix (nxn) that describes how the state evolves from t to t-1 without controls or noise.

• Ct: Matrix (kxn) that describes how to map the state Xt to an observation Yt.

• εt, δt: Matrix (nxn) Random variables representing the process and measurement noise that
are assumed to be independent and normally distributed with covariance Rt and Qt respec-
tively.

3 What can you do with Gaussians?

There are two common parameterizations for Gaussians, the moment parameterization and the nat-
ural parameterization. It is often most practical to switch back and forth between representations,
depending on which calculations are needed. The moment parameterization is more convenient for
visualization (simply draw a Gaussian centered around the mean with width determined by the
variance), calculating expected value, and computing marginals. The natural parameterization is
more convenient for multiplying Gaussians and for conditioning on known variables.

3.1 Moment Parameterization

Recall that the moment parameterization of a Gaussian is:

N (µ,Σ) = p(θ) =
1

z
exp

(
−1

2
(θ − µ)T Σ−1 (θ − µ)

)
(3)

Given:

N
([

µ1
µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
Marginal: computing p(x2)

µmarg
2 = µ2

Σmarg
2 = Σ22

Conditional: computing p(x1|x2)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21

3.2 Natural Parameterization

Recall that the natural parameterization of a Gaussian is:

Ñ (J, P ) = p̃(θ) =
1

z
exp

(
JT θ − 1

2
θTPθ

)
(4)
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Given:

N
([

J1
J2

]
,

[
P11 P12

P21 P22

])
Marginal: computing p(x2)

Jmarg
2 = J2 − P21P

−1
11 J1

Pmarg
2 = P22 − P21P

−1
11 P12

Conditional: computing p(x1|x2)

J1|2 = J1 − P12x2

P1|2 = P11

4 Lazy Gauss Markov Filter

Motion Model (Prediction step):

Before the observation is taken:
Xt+1 ∼ µ−t+1 = Aµt

Proof:

E[Xt+1] = E[AXt + ε]

⇒ E[Xt+1] = E[AXt] + E[ε]

since variance of ε is 0,
⇒ E[Xt+1] = AE[Xt] = Aµt

Variance,
Σ−t+1 = E[Xt+1 ∗Xt+1

T ]

⇒ Σ−t+1 = E[(AXt + ε)(AXt + ε)T ]

= E[(AXt)(AXt)
T ] + E[εterms]

= AE[(Xt)(Xt)
T ]AT + E[εterms]

⇒ Σ−t+1 = AΣtA
T + E[εterms]

E[εterms] is equal to the variance of ε which is Q.
Therefore Motion Update becomes:

µ−t+1 = Aµt

Σ−t+1 = AΣtA
T +Q
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4.1 Observation Model (Correction step):

For the observation model Natural parameterization is more suitable as it involves multiplication
of terms. When, Y is the corresponding observation for state variable X, the model equation in
terms of Natural Parameters J and P is given by,

e(J
−TX− 1

2
XTPX) ∗ e−

1
2
(Y−CX)TR−1(Y−CX)

⇒ e−
1
2
[−2Y TR−1CX+XTCTR−1CX+Y TR−1Y ]

The last term is a constant with respect to X, so it goes into the marginalization term.

⇒ e−
1
2
[−2Y TR−1CX+XTCTR−1CX]

Therefore the Observation Update is:

J+ = J− + (Y TR−1C)T

P+ = P− + C−1R−1C

This form is useful when there are large number of motion and observation updates.
Lazy Gauss Markov can be expressed in two forms:

• When expressed in terms of moment parameters µ and Σ acts as Kalman Filter.

• When expressed in terms of natural parameters J and P acts as Information Filter.

Next time we will cover the Kalman Filter!
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