
Statistical Techniques in Robotics (16-831, F11) Lecture#18 (Monday November 14)

Kalman Filtering (part 2)

Lecturer: Drew Bagnell Scribe: Adam Komoroski 1

1 Non-Linear Regression

In this example we want to use an EKF for a non-linear regression problem. In this case our state
vector is a set of weights w and we wish to estimate the mean and variance µw,Σw with our EKF,
which we will just refer to as µ and Σ from here on.

Table 1: Comparing a general Kalman Filter with a Bayes Linear Regression Example
KF BLR Difference

x w

A I No process model for how weights are changing over time

Ct xT Different linearlization at every time step.

Q 0 Growing uncertainty with time.

Y y y = wTx+ ε

Σ0 Σw prior

µ0 µw prior

For our observation model we want to use the non-linear sigmoid function σ(x) = 1
1+exp(x) :

yt = σ(wTxt) + ε, where ε ∼ N (0, γ2) (1)

Note that our output in this case is a single value, so our Jacobian will be a vector. We can find
the Jacobian Jσ using the chain rule and the fact that ∂σ

∂x = σ(x)(1−σ(x)). Here we actually want
to find the derivative of g(w) = σ(wTx), so we use the chain rule with z = wTx.

∂g

∂w
=

∂g

∂z

∂z

∂w
(2)

= σ(wTx)(1− σ(wTx))xT (3)

Jσ =
∂g

∂w
(µ) (4)

= σ(µTx)(1− σ(µTx))xT (5)

This gives update equations:

µt+1 = µ+t + Σ+
t J

T
σ (JσΣ+

t J
T
σ + γ2)−1[yt+1 − σ(µ+t

T
x)] (6)

Σt+1 = Σ+
t − Σ+

t J
T
σ (JσΣ+

t J
T
σ + γ2)−1JσΣ+

t (7)

1Some content adapted from previous scribes: Jackie Libby, Hyunggi Cho, and Alberto Rodriguez

1



For this non-linear regression example, there is no motion step, so the update step just takes the
output of the update step from the last round. In other words, µ−t+1 = µ+t and Σ−

t+1 = Σ+
t .

Alternatively, we could add in a pseudo motion model to represent growing uncertainty with each
time step:

µ−t+1 = µt (8)

Σ−
t+1 = Σt + λI (9)

where λ is forgetting factor and I is an identity matrix.

Also, since we use the sigmoid function for this example, we use γ2 instead of σ2 to denote the
variance, to avoid confusion. More generally, this would be the covariance, R, but in this example
the sigmoid function outputs a scalar.

2 Statistically Linearized Kalman Filters

Assuming we have the general nonlinear system given by the following equations:

xt+1 = f(xt) + εt+1, where ε ∼ N (0, Q) (10)

yt+1 = g(xt+1) + δt+1, where δ ∼ N (0, R) (11)

with non-linear functions f and g, we can use other approaches besides the EKF. A Statistically
Linearized Kalman Filter tries to overcome that limitation by approximating the Jacobian matrix
of the system in a broader region centered at the state of the system. This type of approach also
offers the benefit that it that it does not require continuity or differentiability of the motion and
measurement models. Since it is not necessary to compute Jacobian matrices, these methods can
offer benefits in terms of computational efficiency as well. However, a downside is that they require
the non-linear functions f and g to be provided in closed form.

2.1 Montecarlo Kalman Filter

One example of such a filter is the Mantecarlo Kalman Filter (MCKF). This isn’t actually a real
filter used in practice, but it is presented here for the sake of demonstration, as a precursor to the
discussion of the Unscented Kalman Filter next.

Motion Model

Given the equation of the motion model xt+1 = f(xt) + ε, µt and Σt we need to estimate µ−t+1 and
Σ−
t+1. For that we draw samples from the prior distribution xit and pass them through f(x). That

way, and with the law of large numbers in hand, we can estimate:

2



µ−xt+1
=

1

N

N∑
i=1

f(xit) (12)

Σ−
xt+1

=
1

N

[∑(
f(xit)− µ−xt+1

)
·
(
f(xit)− µ−xt+1

)T]
+Q (13)

NOTE: Q is additive noise, uncorrelated with xt.

Observation Model

Given the equation of the observation model yt+1 = g(xt+1) + δ the update rules are the same as
before:

µ+xt+1
= µ−xt+1

+ ΣXY Σ−1
Y Y (yt − µy) (14)

Σ+
xt+1

= Σ−
t+1 − ΣXY Σ−1

Y Y ΣY X (15)

But now we approximate µy, ΣY Y and ΣXY as:

µy =
1

N

N∑
i=1

g(xit) (16)

ΣY Y =
1

N

[
N∑
i=1

(
g(xit)− µy

)
·
(
g(xit)− µy

)T]
+R (17)

ΣXY =
1

N

[
N∑
i=1

(
xit − µxt

)
·
(
g(xit)− µy

)T]
(18)

In the above equations, we can choose to replace µ−xt+1
with f(µxt) and µy with g(µ−xt+1

). In other
words, we take the mean of our samples and pass them through the nonlinear functions f and g,
instead of passing every sample through the functions. If the samples were perfectly gaussian, these
two methods would produce the same result.

Note that last year’s lectures used xit+1 instead of xit in these update equations. I believe it is more
correct to use xit. There can be two cases: case 1 is that we’re doing an update step on the same
timestep as a motion step, (which is what the overall notation is suggesting with the +’s and -’s).
In this case, we would not have xit+1’s to sample from, because we are still at time step t. Case
2 is that we’re doing an update step at the next timestep, and that we are treating the motion
and update steps as asynchronous events that happen independently from each other. In this case,
we would look at the update step separately from the motion step, and we could leave the time
subscript out altogether because an update step happens at one moment in time.

Comparing the Montecarlo Kalman Filter (MCKF) with the standard Particle Filter (PF):

• Good things about the MCKF

3



– The MCKF forces some smoothing on the uncertainty that simplifies the process to get
a solution.

– The MCKF doesn’t need as many samples as the PF. The number of samples is on the
order of O(d2). To estimate n parameters, we need O(n) particles. Here we have d2

parameters.

• Bad things about the MCKF

– The MCKF will always be unimodal, while a the PF can perfectly maintain several
modes in the estimation of the distribution.

2.2 Sigma-Point Filter

A Sigma-Point Filter has exactly the same formulation as a Montecarlo Kalman Filter but it draws
samples in a deterministic way from interesting locations. Suppose ∆i are the eigenvectors of the
covariance matrix Σxt . Then we sample the points as:

µxt ± λi∆i i = 1 . . . d

where d is the dimension of xt and λi is proportional to the eigenvalue corresponding to eigenvector
∆i. In other words, we pick one point along each eigenvector direction. We also sometimes pick
the last point as the mean itself, so the number of points is 2d+ 1. Then, the update rule for the
motion model becomes:

µ−xt+1
= wi

N∑
i=1

f(xit) (19)

Σ−
xt+1

= wi

[∑(
f(xit)− µ−xt+1

)
·
(
f(xit)− µ−xt+1

)T]
+Q (20)

This assumes the weights sum to 1. There are different versions of Sigma-Point filters and they
all differ on how weights wi are selected. All versions choose weights so that the method behaves
perfectly for a gaussian model (linear dynamics) and then optimize the weights for different criteria.
Different versions include Unscented Kalman Filter, Central Difference Kalman Filter, ...

The computational cost of Sigma-Point type filters is O(d3) for finding the eigenvectors (usually
implemented by the SVD decomposition) plus 2d+ 1 evaluations of the motion model f(x).

Evaluating the Sigma-Point Filter:

• Good things

– It needs less particles to run, and hence reduces the number of motion model evaluations,
which can be costly.

– It only needs to be implemented once because the algorithm is generic, for any choice of
your model, (f, g).

4



– You don’t have pretend like you know calculus, because there are no Jacobians.

• Bad things

– It can perform really bad if facing an adversarial problem, because it samples the space
in a deterministic way.

– As the dimension goes up, the center weight can become negative. (One fix is to leave
the center value out for the variance calculations.)

– The eigenvalue decomposition need to be done at every time step, which can be costly.
Also, SVD is not always deterministic, so you count bound the computation time. This
makes it difficult to run online.

Summary of Sigma-Point Filter Approach

• Compute sigma points and weights

• Transform sigma points through system dynamics

• Reconstruct random variable statistics using weighted sample mean and covariance

• Perform Kalman measurement update

The Unscented Kalman Filter (UKF) is a type of Sigma-Point Filter, for specific choices of λi’s
and wi’s. Fig. 1 gives a pictorial representation of the UKF:

5



Figure 1: A comparison of the actual transformation, and the approximations given by the linear
approximation and the unscented transformation.
(Source: http://cslu.cse.ogi.edu/nsel/ukf/node6.html)

6


