
Statistical Techniques in Robotics (16-831, F11) Lecture#20 (November 21, 2011)

Gaussian Processes, SLAM, Fast SLAM and Rao-Blackwellization

Lecturer: Drew Bagnell Scribes: Junier Oliva 1

1 Comments on Gaussian Processes

1.1 GP vs. MRF

• GP is like a MRF (with Gaussian RVs) with a continuous number of RVs; that is, it is
extendable to an infinite number of RVs).

1.2 Precision Matrix

• GP cannot be parameterized using precision matrix P because submatrices of P do no cor-
respond to the precision matrix of that subset of elements.

I.e. if P is precision matrix for {a, b} then the precision matrix for {a, b, c, d, . . . } is not


[

P

]
. . .

...
. . .



2 About SLAM

Simultaneous localization and mapping (SLAM) is one of the canonical problems in robotics. A
robot set down in an unknown environment with noisy odometry and sensing needs to figure out
where it is in the world and learn details about the world at the same time. It is a sort of chicken-
egg problem where the mapping problem is relatively easy given exact knowledge of the robot’s
location, and localizing the robot is relatively easy given a good map of the environment. The
challenge is found in performing these tasks simultaneously.

2.1 Variations on the SLAM problem

SLAM can be approached in two ways:

• Batch: Given all data, y1:T , up front, solve for robot path x1:T and map M all at once (we
won’t cover this)

– This approach can be thought of as a smoothing operation on our data.

1Some content adapted from previous scribes: Justin Haines, Neal Seegmiller, and Bryan Wagenknecht

1



• Online/filtering: compute {xt,mt} at each timestep as data yt is received (we focus on this)

– This approach can be thought of as a filtering problem.

– Note: this approch will produce a best guess for the only xt,mt not the entire trajectory

– If, alternatively, you are interested in the robot trajectory, calculate {x1:t,mt} at each
timestep

The mapping part of SLAM can also be approached in two ways:

• Filling an occupancy grid M = {m1,m2, ...} (we’ll come back to this)

• Tracking landmarks li = (lxi, lyi) (focus on this for now)

3 Basic Approaches to SLAM

3.1 Näıve approach: PF over joint

The first potential solution is to build a Particle Filter to sample from the joint distribution

p(rx, ry, lx1, ly1, lx2, ly2, ...)

This becomes bad very quickly due to the high dimensionality of the state space when landmark
position is included (this example has dimension 2 + 2 ∗ l.)

• PF doesn’t scale well with dimensionality - particle sparsity means a particle that is good at
describing one landmark is probably bad at describing others; thus, it will need too many
particles

• Observation distributions/densities get very sharp due to multiplying distributions

3.2 X-KF over joint

The next potential solution (often called the “classical solution”) might be to use your favorite
Kalman Filter (X-KF here could mean EKF, UKF, etc.) to track all variables in one joint distri-
bution

p(rx, ry, lx1, ly1, lx2, ly2, ...)

This results in a big covariance matrix with the marginal gaussian distribution of each landmark
contained in blocks along the covariance diagonal. Off-diagonal terms are correlations from multiple
landmarks appearing in the robot’s view at once.

The motion update would look like:
rx
ry
lx1
ly1
...


t+1

=


[
Ar

]
2x2

0

0

 I




rx
ry
lx1
ly1
...


t

+


εx
εy

0


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where Ar is the Jacobian of the motion model of the robot and εx and εy are gaussian noise. The
identity block represents the assumption that landmarks do not move over time.

The observation model would look like:[
rangei
bearingi

]
=

[ √
(rx − lxi)2 + (ry − lyi)2

atan2((ry − lyi), (rx − lxi))

]
+

[
εrange
εbearing

]

KEY ASSUMPTION: The robot must be able to differentiate landmarks

3.2.1 Potential problems with this approach

• The solution could be multimodal, especially with bad odometry

• Data association: If the robot cannot distinguish between landmarks, problems can arise with
“loop closure” where the robot returns to a location it has already mapped. In this case, the
robot needs to match the landmarks with those previously observed.

Maximum Likelihood data association with hard thresholds is often used for this

• Scales as O(l2) where l is number of landmarks

Although this is better than the complexity of the particle filter SLAM

• What to use for initial landmark location, µx0? Any guess could be arbitrarily wrong and
take a long time to correct

3.2.2 Some hacks that could be helpful

• Use submaps (segment the large world map into smaller maps) and work with smaller chunks
of the covariance matrix.

• When a landmark is seen for the first time, initialize its µx to the observed location, or wait
until seen a couple of times and triangularize location

• Throw out confusing landmarks

3.3 Alternative: Information Filter for SLAM

• Information filter implementation is O(l3) in the number of landmarks

• However, the sparse nature of the lxl matrix inversion allows the algorithm run in closer to
O(l log(l))

4 SLAM as a Bayes Net

If we draw the Bayes Network representation of SLAM we get something like Figure 1. Here the
data associations are presumed to be known and fixed. The main intuition here is that landmarks
are correlated only by observations through the path of the robot.
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Figure 1: Bayes Network representation of SLAM. Robot states ri form a Markov chain and data
associations (which landmarks li are in view at each observation yi) are presumed known and fixed.
Observe that the landmark locations are conditionally independent given the robot states.

4.1 Fast SLAM factorization

Investigation of the Bayes Net shows us that we can make the landmark locations independent by
conditioning on the robot locations. This allows us to factorize the distribution as

p(y1:t|z1:t, u1:t) = p(x1:t|z1:t, u1:t) ·
∏
i

p(li|x1:t, z1:t)

Thus we can track the landmark locations independently by conditioning on the assumed robot
position.

Fast SLAM is an algorithm that runs a particle filter in robot location space using augmented
particles. Each particle carries a history of its past locations r1...rt and an individual Kalman filter
(consisting of µli and Σli) for each landmark li it sees. This is visualized in Figure 2.

5 Smarter Approach: Fast SLAM

5.1 Fast SLAM 1.0

The first version of Fast SLAM runs a particle filter with augmented particles, then applies im-
portance weighting to the particles using the latest estimates of any landmarks within view. The
landmarks are tracked independently in Kalman filters within each particle.
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Figure 2: Fast SLAM particles include a history of their positions and individual Kalman filters
for each landmark.

5.1.1 Fast SLAM 1.0 Algorithm

1. Motion update: for all particlei, move ri according to motion model (leave KF’s for landmarks
alone)

rt ∼ p(rt|rt−1, ut)

2. Observation update: weight particlei by p(y|associations l, ri) ∼ N(µy,Σyy)

p(y|associations l, ri) =
1√

(2π)2 |Σyy|
exp

[
−1

2
(y − µy)TΣyy(y − µy)

]
3. Run KF update on each particle’s estimate of landmark l

4. Resample particles

5.1.2 Timestep Complexity: O(l)

• Data association is O(l) (use KD tree)

• Memory copy is O(l)

5.1.3 Number of parameters:

• #particles · [(2 + 3) ·#landmarks+ 2]; (2+3) for µ,Σ, last 2 for pose.

5.1.4 Occupancy Grids

• In theory each particle should carry its own map grid (instead of KF’s)

• Practically this is too memory intensive, use data structure tricks: DP-SLAM

Use a single map grid with data for all relevant particles in each cell
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5.2 Fast SLAM 2.0

The problem with Fast SLAM is paricle deprivation, especially for loop closure. The key is to have
a smarter motion model (sampling distribution). The Fast SLAM 2.0 motion model is conditioned
on the observation zt in addition to the control, ut.

5.2.1 Fast SLAM 2.0 Algorithm

1. Motion update: Sample robot position from Kalman filter p̃(xt+1|yt+1, xt, zt)

2. Observation update: Weight particlei by

wi ∝
p(yt+1|associations l, ri)

p̃(xt+1|yt+1, xt)

6 Wrap-up Topics

6.1 Data association

If we want to be lazy with data association (or we can’t label the landmarks a priori) then we
can track associations within the particle. Wrong assignments are corrected in retrospect for free
through particle resampling.

• For each landmark li, sample associations from p(y|li, r)

6.2 Rao-Blackwell theorem

The Rao-Blackwell theorem says running an algorithm that samples from a distribution on one
variable p(x1) then determines another variable x2 analytically conditioned on x1 will do no worse
than an algorithm that samples from the joint distribution p(x1, x2).

var [sampler(x1, x2)] ≥ var [sampler(x1) + does x2|x1 analytically]

Fast SLAM is an example of Rao-Blackwellization since by using KF’s inside particles, we don’t
have to sample landmark info from the whole joint distribution. In general Rao-Blackwellized filters
make for the most efficient SLAM algorithms.

7 Occupancy Grid SLAM

7.1 DP SLAM

Murphy initially proposed Fast SLAM using occupancy grid maps2. In the simplest implementation,
a complete map is stored for each particle; however, this is too memory intensive (and computa-

2Kevin Murphy, “Bayesian Map Learning in Dynamic Environments,” NIPS 1999. (Neural Info. Proc. Systems)
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tionally expensive to copy the maps). Researchers at Duke University proposed DP SLAM which
uses dynamic programming to reduce the memory/computational requirements3.

The basic idea: If two particles share a common ancestor, both their maps will agree with the
observations of that common ancestor. A single occupancy grid map is stored with an observation
tree at each cell (storing the observations of all particles that affect that cell).

Efficient maintenance of this data structure is non-trivial.

Figure 3: Example of particle ancestry for DP SLAM. Note that all particles at t3 are descended
from the root a as well as b at t1. All particles at t3 will share the observations of b and its
predecessors, so these sections of the map need only be stored once.

7.1.1 Loss of diversity

Ideally, in order to close loops diversity must be maintained on the order of the largest loop that
will ever be traversed. However, DP SLAM typically only maintains diversity on the order of 2-3
meters (i.e. all current particles are descended from a single particle 2-3 meters back). Despite
this, DP SLAM still works due to high localization accuracy.

7.2 3D Fast SLAM

Nathaniel Fairfield’s research on DEPTHX4 is an example of efficient occupancy grid SLAM in 3D.
An octree data structure is used to maintain hundreds of maps required by the particle filter. The
octree structure exploits spatial locality and temporal shared ancestry between particles to reduce
the processing and storage requirements.

3http://www.cs.duke.edu/~parr/dpslam/
4Nathaniel Fairfield, George Kantor, and David Wettergreen, “Real-Time SLAM with Octree Evidence Grids for

Exploration in Underwater Tunnels,” Journal of Field Robotics 2007.
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Figure 4: Illustration of loss of diversity in DP SLAM. In this example, correcting the map after
closing the loop around the rectangular obstacle would require diversity of paths all the way back
to the root; however, the map can only be corrected over length d because the maps of all current
particles share the observations of the common ancestor.

8 Stochastic Gradient Descent approach to SLAM

Olsen proposed as fast gradient descent approach to recovering a time sequence of robot poses5.
The steps are:

1. Marginalize out the landmarks

2. Use stochastic gradient descent to optimize pose graph

3. (if desired) Perform mapping using the optimized pose data

8.1 Marginalize out the landmarks

Observations of landmark location relative to robot pose are converted to constraints between
poses from which the same landmark was observed. This results in fewer variables (no landmark
variables) but more constraints. The resulting pose graph will have two types of constraints:

1. temporal (odometry) constraints between poses at adjacent timesteps

2. landmark constraints between poses from which the same landmark was observed

8.2 Critical trick: represent the state variables as pose deltas

At each iteration a single constraint is chosen at random for the update.

5Edwin Olson, John Leonard, and Seth Teller, “Fast Iterative Alignment of Pose Graphs with Poor Initial Esti-
mates,” ICRA 2006
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Figure 5: Illustration of marginalizing out a landmark. The observations of landmark l1 at poses
x2 and x4 (left) are converted to a single pose constraint (right).

Instead of representing the state variables as robot poses, represent them as the difference in pose
between timesteps.


x0
x1
x2
...

→


x0
∆x1
∆x2

...


Robot pose is calculated by summing the pose deltas, so a change in any one pose delta affects the
robot pose at all subsequent timesteps. Alternatively, this change in representation can be thought
of as a change in the distance metric used by gradient descent.

Figure 6: (left, original representation) Consider x3 undergoes a large update due to a landmark
constraint. Likely many iterations will pass before o2 or o3 are selected, finally updating the
neighboring poses. (right, pose delta representation) Because a change in pose delta affects all
subsequent poses, sequences of poses will update together.

8.3 Other notes

• it’s magic! tends to jump over local minima

• be clever about the learning rate (increase for loop closure, etc.)

• this is a batch algorithm, but it can be implemented online using a sliding window/lag filter
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