
Statistical Techniques in Robotics (16-831, F10) Lecture#8 (Thursday September 26)

Inference in Gibbs Fields

Lecturer: Drew Bagnell Scribe: Jiaji Zhou

1 Problems for Inference

Following are the inference questions we would like to have answered while examining a Gibbs’
field:

Consider binary vector state first:

• What is the mostly likely state? i.e. compute

arg max
x

p(x),

where x is a vector of the random variables representing the states.

Some examples where the maximum probability is used are: obtaining likely segmentation of
an image, and computing the most probable map in a mapping problem.

• What is p(x) for some x?

This problem is hard because of the normalizer. Let’s say we had the Gibbs’ field of the type
shown in Figure 1. The probability of a particular pattern x0 is computed as:

P (x0) =
1

Z
exp

−∑
ij

fij(x0i, x0j)

 .

The normalizer Z is computed as the sum of the numerator over all possible configurations
of all the x’s.

Z =
∑

x1∈{0,1}

∑
x2∈{0,1}

...
∑

xn∈{0,1}

exp

−∑
ij

fij(xi, xj)

 . (1)

If the x’s are binary, evaluation of Z takes 2n amount of work. In general for discrete random
variables, the evaluation will take pn work where p is the number of values that the random
variable can take.

• Marginals: p(x1) Some examples where marginals are used are: in speech reconstruction (to
find the probability of a particular word), or depth reconstruction (probability of individual
depths at various pixels).

To compute the marginal of x1, we sum the probability distribution over all variables except
x1. Again, for binary variables, this takes O(2n) work.

p(x1) =
∑

x2∈{0,1}

∑
x3∈{0,1}

...
∑

xn∈{0,1}

p(x). (2)

0Some content (mainly for shortest path analogy and gibbs sampling) adapted from previous scribe: Natasha
Kholgade

1

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

x11 x12 x13 x14 x15

Figure 1: Gibbs’ field with maximum clique size 2.

• Expected value of a function g under p, i.e. Epg(x), which we could compute by drawing
samples from p.

An instance where this may be used is: g is a function describing a room, what is the
probability of the robot being in the room?

The following sections address these questions.

2 Argmax

2.1 Chains

Computing the most probable state is easy for a chain. The computation of maximum probability
for all other Gibbs’ fields is a generalization of the case for the chain.

Let us consider the chain in Figure 2. For convenience, we shall drop the negative sign, and assume
it is incorporated within the f ’s. We are interested in computing the following maximum:

max
x1

max
x2

...max
xn

 1

Z
exp

∑
ij

fij(xi, xj)

 .

The maximizers will be unchanged if we take the log of the probability and drop Z (since it is
constant). For the chain, we can rewrite the maximum after taking the log and removing Z as:

max
x1

max
x2

max
x3

max
x4

max
x5

(f1(x1, x2) + f2(x2, x3) + f3(x3, x4) + f4(x4, x5)) . (3)

If the x’s are binary, computing 3 as it is takes 25 work. We would need to enumerate all possible
values of the x’s, compute the sum on the right, and choose the maximum of 32 sums. This can

x1 x2 x3 x4 x5

Figure 2: Chain with 5 nodes.

2

x1 x2

x3 x4

x5 x6

Figure 3: Gibbs’ field with tree structure.

get prohibitively expensive for large chains. We can reduce the work to linear by ‘pushing the max
to the right’ using the generalized distributive law. This particular version of the generalized
distributive law is called the max-sum version (though it may also be max-product if the original
probability distribution is retained without taking logs).

Using the generalized distributive law, we rewrite 3 as:

max
x1

max
x2

(
f1(x1, x2) + max

x3

(
f2(x2, x3) + max

x4

(
f3(x3, x4) + max

x5

(f4(x4, x5))

)))
. (4)

We can represent the last term as a function of x4:

q4(x4) = max
x5

(f4(x4, x5)) .

The actual computation for q(x4) is done as follows: for each value of x4 (i.e. for x4 = 0 and
x4 = 1), obtain the value of x5 that maximizes f4(x4, x5), and store the maximizing values of x5
for both values of x4 together with the corresponding value of q4(x4).

Next, we can represent the terms in x3 and x4 as a function of x3:

q3(x3) = max
x4

(f3(x3, x4) + q(x4)) .

Just like before, for every value of x3, compute the value of x4 that maximizes the right side of
the above expression. This time, while testing different values of x4 to check for the maximum,
perform a lookup for q4(x4) cached from the previous step.

Repeat the above step all the way back to x1. Now move in the forward direction: given the value
of x1 that corresponds to q1(x1) (which will in fact be the maximum we are interested in), figure

x2 x3

x6

x1 x5

x4

x7

Figure 4: Non-tree Gibbs’ field.

3

x1

x2 x3 x4 x5

x7 x6x8

Figure 5: Cyclical Gibbs’ field.

out what is the corresponding cached value of x2 and work forward till x5. This is an instance
of dynamic programming: it is used a lot in graphical models to reduce the computation time of
inference-related quantities based on the generalized distributive law.

2.1.1 Shortest Path Analogy

Now consider split each xi into two nodes (xi = 0 and xi = 1), the negative of fij(xi, xj) as weight
for directed edges between nodes. Also consider adding a source s connecting to x1 = 0 and x1 = 1
and t connecting to x5 = 0 and x5 = 1, now solving equation (3) equals finding the shortest path
from s to t. And since this is a DAG graph, we can perform dynamic programming as described
before.

2.2 Generalization of Chains to Trees and Non-trees

The analysis for chains is directly generalizable to trees. If we have a tree as in Figure 3, we can
rewrite the maximum as:

max
x1

max
x2

(
f1(x1, x2) + max

x3

(
f23(x2, x3) + max

x4

(f3(x3, x4))

)
+ max

x5

(
f25(x2, x5) + max

x6

f5(x5, x6)

))
.

Here, q(x6) and q(x4) will contain one term each, q(x5) and q(x3) will contain two terms each, and
q(x2) will have three terms. The number of terms of a node is equal to its in-degree.

Non-trees are more complicated. For the example in Figure 4, we can write the maximum as:

max
x1

max
x2

(
f1(x1, x2) + max

x3

(
f2(x2, x3) + max

x4

max
x5

max
x6

(
f34(x3, x4) + f36(x3, x6) + f35(x3, x5)

+ max
x7

(f6(x6, x7) + f4(x4, x7) + f5(x5, x7))

)))
.

While taking the maximum over x4, x5, and x6, we still have to do O(23) work. This is akin to
collapsing x4, x5, and x6 into one giant node which can take on 23 values; we now need to test each
of the 23 values to obtain the maximum. It would be nice to know the upper bound work done to
compute the maximum; however, computing this upper bound is in itself an NP−hard problem!
Thus, people use several tricks for non-tree graphs to reduce computation time.

4

Cut-set conditioning: For cycles like the one in Figure 5, we can perform the computation by
breaking the link at a particular node (say, x1). For each value of x1 (i.e. for x1 = 0 and x1 = 1),
we use the chain tricks to figure out the maximum, and then find the maximum of the two cases.

3 Marginals

The same generalized distributive law trick applies to computing marginals and Z. In this case it
takes the sum-product form. For the chain in Figure 2, we can compute Z by ‘pushing over the
sum’. Equation 1 can be rewritten as:

Z =
∑
x1

∑
x2

e−f1(x1,x2)
∑
x3

e−f2(x2,x3)
∑
x4

e−f3(x3,x4)
∑
x5

e−f4(x4,x5). (5)

For each pair of variables, xi and xj , we cache the sums
∑

xi
e−fi(xi,xj) + qj(xj) for each value of

xi, pulling the appropriate value of qj(xj) cached in the previous step. Marginals can be computed
in the same way.

p(x1) =
∑
x2

e−f1(x1,x2)
∑
x3

e−f2(x2,x3)
∑
x4

e−f3(x3,x4)
∑
x5

e−f4(x4,x5). (6)

4 Ratios

In general it is not easy to compute p(x) because of the number of terms involved, and the normalizer
Z. Instead, what is easy is to compute is ratios, especially for graphical models where there is some
structure. For instance, let’s say we have two configurations for the Gibbs’ field in Figure 1:
x0 = [0, 0, 0,] and x1 = [1, 0, 0,]. In the ratio,

p(x0)

p(x1)
,

a number of things cancel out:

• Z cancels out as it is constant for all p(x).

• Any terms in the Gibbs’ field which do not involve x1 cancel out, as their values will be
unchanged. Generally, only terms involving ‘changing’ nodes remain.

These ratios can be used to compute maxx p(x) in the following way:

• Start with an initial guess for x.

• Switch a variable at random

• Test the ratio of the current probability with the previous one, and if it is higher, set x to
the new configuration.

• Ascend upwards in this manner till you hit a maximum.

5

This approach is called coordinate ascent: the variables can be considered coordinates of an N-
dimensional space, and we move toward the maximum by changing values along coordinates. The
problem with this approach is that you can often hit a local maximum, nevertheless it is a popular
approach (often combined with multiple initializations, or some clever strategy to select the initial
configuration).

5 Sampling

Samples are valuable because they can be used to compute expected values of functions over a
probability distribution. They can also be used to compute marginals by counting. Most sampling
techniques use the ratios listed in Section 4 to minimize computation time. This section discusses
two techniques: importance sampling and Gibbs’ sampling. The latter (or more commonly some
variant) is the more frequently used method.

5.1 Importance Sampling

This technique has been discussed earlier in class: We want Epf(x), but we can’t sample p, so

we instead sample xi’s from a different distribution q and weight each f(xi) by p(xi)
q(xi)

. As far as
possible, q should be similar to p.

What distribution should we draw from? We can draw from q = Πqi(xi), but this usually does
not work since in most cases, it is too far from the actual distribution p. It is easier to sample
from chains and trees, so often if a non-tree graph is almost a tree, we can convert it to a tree by
breaking some links, sample from the new tree-based distribution, and use importance sampling
to compute the expectations for the non-tree graph. Importance sampling usually only works for
graphs that are nearly trees: in most examples that are of interest, this is never the case.

5.2 Gibbs’ Sampling

Consider the Gibbs’ field in Figure 1. Gibbs’ sampling works as follows:

1. Start with some initial configuration (say [0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1] in the order x1 to
x15).

2. Pick a node at random (say x7).

3. Resample the node’s probability conditioned on its Markov blanket: generate x+7 ∼ p(x7|N(x7)),
i.e. flip a coin in proportion to the likelihood of getting a 0 or a 1 given the neighbors.

4. Repeat steps 3 and 4 for T time steps.

For a large enough T , xt converges to a sample from p(x). To get the next sample, it is necessary
to wait another T time steps, as updates too close to each other may be correlated. If you are
computing the expectation of a function under p, it is more advantageous to do that directly over
the updates, than to wait for samples: for large enough T , 1

T

∑
t f(xt) converges to Epf(x). Note

that in generally x does not converge, it is the expection that converges

6

5.3 Doubts and Answers

You may have the following doubts as I doubted before:

• How could the expection converge? Think of the problem in 2D case (x = [x1, x2]). Pick out
all those steps that we perform resampling on x0 while fixing x1, look at all these x0 and you
will find out they will converge to as if sampled from the marginal probablity p(x0), and so
as x1.

• It is not iid sampled, why does it work? For adjacent steps it is not iid sampled, but if you
look at every K steps (generally K cannot be too small), it is approximately iid sampled.

7

