
Statistical Techniques in Robotics (16-831, F12) Lecture#14 (Wednesday October 17)

Learning by constraints and SVMs (2)

Lecturer: Drew Bagnell Scribe: Albert Wu 1

1 Support Vector Ranking Machine

Opening comment: ten years ago, SVM’s were still a fairly new concept, and solving them as con-
strained quadratic programs was difficult and often required custom code. Now, they are essentially
taken for granted and solving them is much simpler using gradient descent,

In the previous lecture, we discussed example ranking problems like selecting foot placement lo-
cations for walking in Little Dog or predicting winners between football teams. Each candidate
location/team i is described with a feature vector fi (for example, height difference or concavity of
terrain, or average points per game or number of star players), and the desirability of the candidate
is computed using the weight vector w as wT fi. The ranked training examples provide constraints
as pairwise comparisons between candidates, and the ranking problem is solved by finding weight
vector w such that the constraints

wT f1 ≤ wT f2,
...

wT f100 ≤ wT f101

are satisfied.

This formulation leaves three major gaps:

1. There may not exist a w that can satisfy all of the constraints; the training data may be
inconsistent. For example, non-transitive rankings like wT f1 ≤ wT f2, wT f2 ≤ wT f3, wT f3 ≤
wT f1.

2. There can be multiple solutions. At the very least, if wT is a solution, any λwT for λ ≥ 0 is
a solution.

3. There is always the trivial solution of wT = 0. Note: if we were to constrain ||w|| ≥ r, this
would make the problem non-convex.

1.1 Maximum Margin Approach

To address the latter two problems, we can use a maximum margin formulation. Instead of simply
trying the meet the constraints, we use a margin describing by how much the inequalities are
exceeded. The goal is to maximize this margin. In implementation, this can be equivalently be

1Some content adapted from previous scribes: Andrew Chambers, Carl Doersch, and those before them.

1

described by setting the margins (of each inequality) to a constant (we use 1) and then minimizing
the magnitude of ||w||:

min
w
||w||2 subject to:

wT f1 ≤ wT f2 − 1,

...

wT f100 ≤ wT f101 − 1.

The zero vector is no longer a solution, and the minimization problem picks the out the best
from multiple w that satisfy the constraints. Intuitively, minimizing the magnitude of the weights
increases the relative role of the constant 1 in satisfying the inequality constraints, thus “maximizing
the margin.” This problem formulation is called the hard margin support vector ranking
machine.

1.2 Soft constraints

The first issue of potentially no solutions has not yet been addressed. One realistic goal would
be choosing w to minimize the number of constraints are not met. However, this is an NP hard
combinatorial problem. Instead, we will use non-negative slack variables ξj to describe by how
much violated constraints are missed, and we will include these penalties in our cost function:

min
w,ξ

λ

2
||w||2 +

T∑
j=1

ξj subject to:

ξj ≥ 0,

wT f1 ≤ wT f2 − 1 + ξ1,

...

wT f100 ≤ wT f101 − 1 + ξT .

There is one slack variable for each of T constraints, and the factor λ describes the relative im-
portance of the margin (for the correctly evaluated comparisons) versus the penalty paid for the
incorrect decisions. A smaller λ allows for larger weights, violates fewer constraints, and takes
longer to learn. The slack variables ξj are constrained to be non-negative such that the total cost
cannot be improved by “making the correct decisions even better.”

This soft margin support vector ranking machine is still a quadratic program and thus
tedious to solve numerically (cubic in number of constraints T). However, it can be re-expressed
as a convex programming problem that can be tackled much more efficiently using online gradient
descent.

1.3 Online Support Vector Ranking

First, we re-write the optimal values of the slack variables as functions of the weight vector and
the features:

ξj = max(0, wT∆fj + 1)

2

Figure 1: hinge-loss function. The x-axis is wT∆fj , and the y axis is ξj .

where

∆f1 = f1 − f2, . . . (1)

This comes from the fact that if the constraint is satisfied, i.e., wT∆fj + 1 ≤ 0, no slack is required
and the best penalty would be the minimum value of 0. Otherwise, the minimum ξ required to
satisfy the constraint is exactly wT∆fj + 1. This gives us the hinge-loss function (Figure 1) as
the penalty component of our total cost.

Now, we can write the total cost function and optimization problem as

min
w

λ

2
||w||2 +

T∑
j

max(0, wT∆fj + 1)

 ,

or, re-arranging to within the summation,

min
w

 T∑
j

λ

2T
||w||2 + max(0, wT∆fj + 1)

 .

This loss function is convex (as a function of w, since wT∆f + 1 is linear (thus convex) w2 is
quadratic (thus convex), and the maximums and sums of 2 convex functions is convex. Though
it is not differentiable (sharp corner in the hinge loss), it has sub-gradients everywhere due to the
convexity. Thus, we now have a unconstrained, convex optimization problem that can be easily
solved using sub-gradient descent. The sub-gradient Gj is

Gj =
λ

T
w if wT∆fj + 1 ≤ 0,

Gj =
λ

T
w + ∆fj otherwise.

3

The update rule is then

wt+1 = wt − αtGt.

Intuitively, whenever the constraint is not satisfied, the −αt∆ft term makes w look more like f2
and less like f1 (see equation 1), and the −αt λT w term always tends to shrink w in all directions in
order to maximize the margin. The magnitude of λ scales this effect, and smaller values shrinks w
more slowly in a stronger attempt to get all the labels right.

Similar to the derivations in no-regret learning, we can set the learning rate αt ∼ 1√
t

to achieve

no regret. However, because this problem is strongly convex, we can actually use a faster rate of
αt ∼ 1

t (not proved or derived here).

1.4 Algorithm pseudo-code

1 w = zeros(size(features i)) % initialize weights
2 for t = 1:T
3 ∆f = features i − features j;
4 grad = lambda/T*w;
5 if dot(w,∆f) > −1 % violated constraint
6 grad = grad + ∆f;
7 end
8 w = w − alpha(t)*grad;
9 end

Remarks:

� The problem is no unconstrained, and therefore projection is not needed in the sub-gradient
descent.

� The training comparisons can be processed one at a time, but iteration and multiple passes
through the data may be needed until convergence. If so, the order of the data should be
randomized. It is also possible for very large datasets (i.e., Google) that convergence occurs
well before all of the data is seen.

� Upon convergence, w gives exactly the maximum margin classifier.

2 General (not ranking) Support Vector Machines

The binary classification problem can be solved in a very similar way. Here, instead of ranking
examples and providing pairwise comparison constraints, examples are classified with labels yi as
either positive or negative (see Figure 2) such that:

wT fi > 0 if yi = +1,

wT fi < 0 if yi = −1,

or simply

yiw
T fi ≥ 0.

4

X

X

X

X

O

O

O

O

F1

F2

w

Figure 2: Classification problem. Let the x’s be positive labels and the o’s be negative.

Just as before, we have the same three problems of potentially no solutions, repeated solutions,
and trivial solutions using this base formulation, so we again introduce margins and slack.

min
w,ξ

λ

2
||w||2 +

∑
ξi subject to (2)

ξi ≥ 0,

yiw
T fi ≥ 1− ξi. (3)

The slack variables can be written as

ξi = max(0, 1− yiwT fi),
and the constrained problem is then re-expressed as

min
w

λ

2
||w||2 +

∑
max(0, 1− yiwT fi)

This leads to a very similar update rule as the ranking SVM:

1 w = zeros(size(f,1),1) % initialize weights
2 for t = 1:T
3 grad = lambda/T*w;
4 if −y(t)*dot(w,f(t)) > −1 % violated constraint
5 grad = grad −y(t)*f(t);
6 end
7 w = w − alpha(t)*grad;
8 end

5

2.1 Extension: weighted data points

In practice, some data points will be more critical to classify correctly than others. There are three
ways of scaling the data such that it is not handled uniformly:

1. Replicate important data points. This works if the desired scaling is by integer factors.

2. Scale the margin of individual data points, i.e., use a number greater than 1 on the R.H.S of
Equation 3 for important data.

3. Scale the slack variables, i.e., change the sum in Equation 2 to
∑
siξi with scalar si > 1 for

important data. This is equivalent to the first method, but allows for non-integer distributions
of weights.

2.2 Extension: multi-class SVM

Applications are not limited to binary decisions. For example, candidate pictures of fruit can be
classified as apples, oranges, or grapes. In this case, the problem can’t be approached with positive
versus negative weighted feature sums. Instead, we would set up the inequalities

wTa fi ≥ wTo fi,
wTa fi ≥ wTg fi.

...

using separate weight vectors wa,o,g for each label apple, orange, and grape, assuming training
example i was an apple. That is, each example provides two constraints, and the classification
of a test example t would be made as argmax(wTlabelft). Naturally, this formulation is expanded
in the same way using margins and slack variables, and the three weight vectors can be updated
independently using on-line gradient descent.

6

