
Statistical Techniques in Robotics (16-831, F12) Lecture#17 (Wednesday October 31)

Kalman Filters

Lecturer: Drew Bagnell Scribe:Greydon Foil 1

1 Gauss Markov Model

Consider X1, X2, ....Xt, Xt+1 to be the state variables and Y1, Y2, ...Yt, Yt+1 be the sequence of
corresponding observations. As in Hidden Markov models, conditional independencies (see Figure
1) dictate that past and future states are uncorrelated given the current state, Xt at time t. For
example, if we know what X2 is, then no information about X1 can possibly help us to reason
about what X3 should be.

Xt+1XtX2X1 - - - - - - - - - - - - - . . .

Yt+1YtY2Y1 . . .

Figure 1: The Independence Diagram of a Gauss-Markov model

The update for state variable Xt+1 is given by:

Xt+1 = AXt + ε

where
X0 ∼ N(µ0,Σ0)

ε ∼ N(0, Q)

Xt+1|Xt ∼ N(AXt, Q)

The corresponding observation Yt+1 is given by equation:

Yt+1 = CXt+1 + δ

where
Y0 ∼ N(µ0, ε0)

δ ∼ N(0, R)

Each component is defined as follow:
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• At: Matrix (n × n) that describes how the state evolves from t to t-1 without controls or
noise.

• Ct: Matrix (k × n) that describes how to map the state Xt to an observation Yt, where k is
the number of observations.

• εt, δt: Random variables representing the process and measurement noise that are assumed to
be independent and normally distributed with n×n noise covariances Rt and Qt respectively.

We want to find xt|y1...t, so we need to calculate µx+t and Σxt . Because a Gaussian will try to fit
itself to all of the data, in a real situation we would first try to remove all outliers to achieve a
more stable result.

Note that this parameterization is directly related to Bayes Linear Regression if it meets the
following conditions:

• X here is equivalent to θ in BLR and Y here is equivalent to Y in BLR.

• The motion model is just the identity matrix.

• Q is going to 0 as t→∞. It is nonzero if the noise might be changing as a function of time.

• C is the vector xt from BLR, different here at every timestep.

• δ ∼ N(0, σ2).

2 What can you do with Gaussians?

There are two common parameterizations for Gaussians, the moment parameterization and the nat-
ural parameterization. It is often most practical to switch back and forth between representations,
depending on which calculations are needed. The moment parameterization is more convenient for
visualization (simply draw a Gaussian centered around the mean with width determined by the
variance), calculating expected value, and computing marginals. The natural parameterization is
more convenient for multiplying Gaussians and for conditioning on known variables. While it is
often convenient to switch between the two parameterizations, it is not always efficient, as we will
discuss later.

2.1 Moment Parameterization

Recall that the moment parameterization of a Gaussian is:

N (µ,Σ) = p(θ) =
1

z
exp

(
−1

2
(θ − µ)T Σ−1 (θ − µ)

)

Given: [
x1
x2

]
∼ N

([
µ1
µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
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Marginal: computing p(x2)

µmarg
2 = µ2

Σmarg
2 = Σ22

We find both of these by the definition of moments, specifically the fact that the moments of x2
don’t change if x1 is removed.

Conditional: computing p(x1|x2)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

(x2 − µ2) is the distance x2 is from its mean. We then multiply it by its uncertainty (Σ22), and
convert that value into the frame of x1 using Σ12, adding it to our best guess for x1, µ1.

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21

Here we start with the uncertainty in x1, Σ11, and subtract out the uncertainty in x2 and between
x1 and x2, again mapping it to the frame of x1 using Σ12.

2.2 Natural Parameterization

Recall that the natural parameterization of a Gaussian is:

Ñ (J, P ) = p̃(θ) =
1

z
exp

(
JT θ − 1

2
θTPθ

)
where

P0 = Σ−10

J0 = P0µ0

Given: [
x1
x2

]
∼ N

([
J1
J2

]
,

[
P11 P12

P21 P22

])
Marginal: computing p(x2)

Jmarg
2 = J2 − P21P

−1
11 J1

Pmarg
2 = P22 − P21P

−1
11 P12

These are most easily calculated by deriving the marignals in moment parameterization and con-
verting to natural parameterization.

Conditional: computing p(x1|x2)

J1|2 = J1 − P12x2

P1|2 = P11

Derivation of these conditionals is a straightforward expansion of the full moment parameterization,
and was said to be a possible test question. I encourage you to read page 7 of [1] for the full deriva-
tion. Also note that the moment parameterization is often called the canonical parameterization.
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3 Lazy Gauss Markov Filter

Motion Model (Prediction step):

Before the observation is taken:
Xt+1 ∼ µ−t+1 = Aµt

Proof:

Mean:

E[Xt+1] = E[AXt + ε]

= E[AXt] + E[ε]

= AE[Xt](since the mean of ε is 0)

= Aµt

Variance:

Σ−t+1 = E[Xt+1 ∗Xt+1
T ]

= E[(AXt + ε)(AXt + ε)T ]

= E[(AXt)(AXt)
T ] + V ar(ε)

= AE[(Xt)(Xt)
T ]AT +Q

= AΣtA
T +Q

Therefore the motion update becomes:

µ−t+1 = Aµt

Σ−t+1 = AΣtA
T +Q

3.1 Observation Model (Correction step):

For the observation model the natural parameterization is more suitable as it involves multiplication
of terms. The model equation in terms of Natural Parameters J and P is given by:

P (yt+1|xt+1)P (xt+1) ∝ e(J
−T xt+1− 1

2
xT
t+1Pxt+1) ∗ e−

1
2
(yt+1−Cxt+1)TR−1(yt+1−Cxt+1)

= e−
1
2
[−2yTt+1R

−1Cxt+1+xT
t+1C

TR−1Cxt+1+yTt+1R
−1yt+1]

= e−
1
2
[−2yTt+1R

−1Cxt+1+xT
t+1C

TR−1Cxt+1]

The last term in the second line is constant with respect to xt+1, so it can be added to the the
marginalization term. Therefore the observation update is:

J+
t+1 = J−t+1 + (yTt+1R

−1C)T

P+
t+1 = P−t+1 + C−1R−1C
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3.2 Performance

Lazy Gauss Markov can be expressed in two forms:

• When expressed in terms of moment parameters, µ and Σ, it acts as Kalman Filter.

• When expressed in terms of natural parameters, J and P , it acts as Information Filter.

Kalman filters, as we will see, require matrix multiplications, approximately O(n2) time, to do
a prediction step, yet require matrix inversions, approximately O(n2.8) time, to perform the ob-
servation update. Information filters are the exact opposite, requiring matrix inversions for the
prediction step and matrix multiplications for the observation update. As mentioned above, the
conversion between moment and natural parameterization requires an inversion of the covariance
matrix, so switching between the two can be costly. Depending on the ratio of motion model
updates to observation model updates one filter may be faster than the other.
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