Statistical Techniques in Robotics (16-831, F12) Lecture#19 (Wednesday November 7)

Kalman Filtering (part 2)
Lecturer: Drew Bagnell Scribe: Keheng Zhang *

1 Statistically Linearized Kalman Filters

Recall that last time in the end of the class, we talked about the Extended Kalman Filter and
one way to perform its linearization, the Taylor Series Expansion. Assuming we have the general
nonlinear system given by the following equations:

xep1 = f(xe) + e, where € ~ N(0, Q) (1)
Y1 = g(Tr41) + 041,  where 6 ~ N(0, R) (2)

The Taylor Expansion method tries to approximate the transformations using the first order Taylor
expansion at the mean of . We discussed the major flaw with EKF that the Taylor expansion is
a poor approximation of most non-linear functions.

In this lecture another approach is given to overcome the limitation of EKF. A Statistically Lin-
earized Kalman Filter tries to overcome that limitation by approximating the Jacobian matrix of
the system in a broader region centered at the state of the system. This type of approach also offers
the benefit that it does not require continuity or differentiability of the motion and measurement
models. Since it is not necessary to compute Jacobian matrices, these methods can offer benefits in
terms of computational efficiency as well. However, a downside is that they require the non-linear
functions f and g to be provided in closed form.

1.1 Monte-Carlo Kalman Filter

One example of such a filter is the Mante-Carlo Kalman Filter (MCKF). In this method we sample
the points around the mean and try to find the best fit (a line, a plane, etc.) over the points and
use this approximation to run the Kalman Filter.

This is not actually a real filter used in practice, but it is presented here for the sake of demonstra-
tion, as a precursor to the discussion of the Unscented Kalman Filter next.

Motion Model

Given the equation of the motion model 411 = f(x¢) + €, ¢ and X; we need to estimate y,_ 41 and
¥ 1- Recall the KF equations for the motion model:

fepr = A (3)
S = AR AT+ Q (4)

!Some content adapted from previous scribe by Adam



For now in MCKF we draw samples from the prior distribution z! and pass them through f(z).
That way, and with the law of large numbers in hand, we can estimate:

s = v o) o)
Sne = 3 |2 (e = pa) - (16D - ) |+ @ 0

NOTE: @ is additive noise, uncorrelated with x;. If we do not add Q here, we would have to add
noise to each sample.

Observation Model

Given the equation of the observation model y; 11 = g(x¢41) + ¢ the update rules are the same as
before in the KF observation model:

B = e, + SxvEyy (v — ) (7)
D ) (8)

But now we approximate i, Xyy and Xxy as:

?/i+1 = 9( tr1) (9)
1
fy = NZ (10)
i=1
1 [ T
Yyy = N [Z yt+1 My) (yt+1 Ny) +R (11)
=1
1 [& . .
Yxy = N [Z $t+1 - M;Hl) : (yiH - Ny) (12)
NOTE: In above equations p, # g(pz)

In the above equations, we can choose to replace ug,  with f(us,) and py with g(ug, ). In other
words, we take the mean of our samples and pass it through the nonlinear functions f and g, instead
of passing every sample through the functions. If the samples were perfectly gaussian, these two
methods would produce the same result.

Comparing the Montecarlo Kalman Filter (MCKF) with the standard Particle Filter (PF):

e Good things about the MCKF

— The MCKEF forces some smoothing on the uncertainty that simplifies the process to get
a solution.

— The MCKF doesn’t need as many samples as the PF. The number of samples is on the
order of O(d?). To estimate n parameters, we need O(n) particles. Here we have d?
parameters.



e Bad things about the MCKF

— The MCKF will always be unimodal, while a the PF can perfectly maintain several
modes in the estimation of the distribution.

1.2 Sigma-Point Filter

Another sampling-based method for dealing with non-linearities is the Sigma-Point Filter. A Sigma-
Point Filter has exactly the same formulation as a Monte-Carlo Kalman Filter but it draws samples
in a deterministic way from the mean and simplex. (With MCKF we usually pick points on
principle axis.) Suppose A; are the eigenvectors of the covariance matrix 3;,. Then we sample the
points as:

,uxti)\iAi i=1...d

where d is the dimension of z; and \; is proportional to the eigenvalue corresponding to eigenvector
A;. In other words, we pick one point along each eigenvector direction. We usually pick the
distance along the axis as one standard deviation. We also sometimes pick the last point as the
mean itself, so the number of points is 2d+ 1. Then, the update rule for the motion model becomes:

Hor = Wi fa)) (13)
Si = Wi [Z (fh) = pizre,) - (flah) — u;m)T} +Q (14)

This assumes the weights sum to 1. There are different versions of Sigma-Point filters and they
all differ on how weights w; are selected. All versions choose weights so that the method behaves
perfectly for a gaussian model (linear dynamics) and then optimize the weights for different criteria.
Different versions include Unscented Kalman Filter, Central Difference Kalman Filter, ... Fig. 1
illustrates the linearization applied by UKF.

The computational cost of Sigma-Point type filters is O(d?) for finding the eigenvectors (usually
implemented by the SVD decomposition) plus 2d + 1 evaluations of the motion model f(x).

Evaluating the Sigma-Point Filter:

e Good things
— It needs less particles to run, and hence reduces the number of motion model evaluations,
which can be costly.

— It only needs to be implemented once because the algorithm is generic, for any choice of
your model, (f,g).

— You don’t have pretend like you know calculus, because there are no Jacobians.
e Bad things

— It can perform really bad if facing an adversarial problem, because it samples the space
in a deterministic way.



— As the dimension goes up, the center weight can become negative. (One fix is to leave
the center value out for the variance calculations.)

— The eigenvalue decomposition need to be done at every time step, which can be costly.

Also, SVD is not always deterministic, so you count bound the computation time. This
makes it difficult to run online.
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Figure 1: Linearization applied by UKF.

Summary of Sigma-Point Filter
e Compute sigma points and weights
e Transform sigma points through system dynamics

e Reconstruct random variable statistics using weighted sample mean and covariance

e Perform Kalman measurement update

The Unscented Kalman Filter (UKF) is a type of Sigma-Point Filter, for specific choices of \;’s

and w;’s. Fig. 2 gives the comparision between the actual transformation, and the approximations
given by the linear approximation and the unscented transformation:
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Figure 2: A comparison of the actual transformation, and the approximations
given by the linear approximation and the unscented transformation. (Source:

http://cslu.cse.ogi.edu/nsel /ukf/node6.html)



