
Statistical Techniques in Robotics (16-831, F12) Lecture #22 (Nov 19, 2012)

Kernel Machines/ Functional Gradient Descent

Lecturer: Drew Bagnell Scribe: Liz Cha1

1 Review of Kernels and Functional Gradients

1.1 Kernels

• Ultimately, we wish to learn a function f : Rn → R that assigns a meaningful score given a
data point. For example, in binary classification, we would like an f(·) to return positive and
negative values, given positive and negative samples, respectively.

• A kernel K : Rn × Rn → R intuitively measures the correlation between f(xi) and f(xj).
Considering a matrix K with entries Kij = K(xi,xj), then matrix K must satisfy the prop-
erties:

– K is symmetric (Kij = Kji)

– K is positive-definite (∀x ∈ Rn : x 6= 0,xTKx > 0)

Hence, a valid kernel is the inner product: Kij = 〈xi,xj〉.

• A function can be considered that is a weighted composition of many kernels centered at
various locations xi:

f(·) =

Q∑
i=1

αiK(xi, ·), (1)

where Q is the number of kernels that compose f(·) and αi ∈ R is each kernel’s associated
weight. All functions f(·) with kernel K that satisfy the above properties and can be written
in the form of Equation 1 are said to lie in a Reproducing Kernel Hilbert Space (RKHS) HK :
f ∈ HK

However to do gradient descent on the space of such functions, we need the notion of a distance,
norm and an inner product. We formalize this by introducing the Reproducing Kernel Hilbert
Space.

1.2 Functional gradient

A gradient can be thought of as:

• Vector of partial derivatives

1Based on the scribe work of Abhinav Shrivastava, Varun Ramakrishna, Dave Rollinson, Daniel Munoz, Tomas
Simon, Jack Singleton and Sergio Valcarcel

1

• Direction of steepest ascent

• Linear approximation of the function (or functional), ie. f(x0+ε) = f(x0)+ε·∇f(x0)︸ ︷︷ ︸
gradient

+O(ε2).

We will use the third definition. A functional E : f → R is a function of functions f ∈ HK . As an
example let us write the terms of our loss function from above as functionals:

• E1[f] = ||f ||2

• E2[f] = (y − f(x))2

• E[f] =
∑

i(yi − f(xi))
2 + λ||f ||2

A functional gradient ∇E[f] is defined implictly as the linear term of the change in a function due
to a small perturbation ε in its input: E[f + εg] = E[f] + ε〈∇E[f], g〉+O(ε2).

Before computing the gradients for these functionals, let us look at a few tools that will help us
derive the gradient of the loss functional

1.3 Chain rule for functional gradients

Consider differentiable functions C : R → R that are functions of functionals G, C(G[f]). Our
cost function L[f] from before was such a function, these are precisely the functions that we are
interested in minimizing.

The derivative of these functions follows the chain rule:

∇C(G[f]) =
∂C(G[f])

∂λ
|G(f)∇G[f] (2)

Example: If C = (||f ||2)3, then ∇C = 3(||f ||2)2(2f)

1.4 Another useful functional gradient

Another useful functio nthat we come across often is the evaluation functional. The evaluation
functional evaluates f at the specified x: Ex[f] = f(x)

• Gradient is ∇Ex = K(x, ·)

Ex[f + εg] = f(x) + εg(x) + 0

= f(x) + ε〈K(x, ·), g〉+ 0

= Ex[f] + ε〈∇Ex, g〉+O(ε2)

• It is called a linear functional due to the lack of a multiplier on perturbation ε.

2

1.5 Functional gradient of the regularized least squares loss function

• Let’s look at the functional gradient of the second term of the loss function:

∇E[f] = ∇||f ||2 (3)

Expanding it out using a Taylor’s series type expansion

E[f + εg] = 〈f + εg, f + εg〉
= ||f ||+ 2〈f, εg〉+ ε2||g||
= ||f ||+ ε〈2f, g〉+O(ε2)

We observe that
∇E[f] = ∇||f ||2 = 2f (4)

• Now for the first term of the loss function

E[f] =
∑
i

(yi − f(xi))
2 (5)

Using the chain rule we have

∇E[f] = −2(yi − f(xi))∇(f(xi)) (6)

We observe that ∇(f(xi)) is the functional gradient of the evaluation functional. Substituting
in the gradient of the evaluaton functional as computed in the previous section we have :

∇E[f] = −2(yi − f(xi))K(xi, ·) (7)

2 Functional gradient descent

• Regularized least squares loss function L[f]

L[f] = (yi − f(xi))
2 + λ||f ||2

L[f] = (yi − Exi [f])2 + λ||f ||2

∇L[f] = −2(yi − f(xi))K(xi, ·) + 2λf

Update rule for the regularized least squares loss function:

ft+1 ← ft − ηt∇L
← ft − ηt(−2(yt − ft(xt))K(xt, ·) + 2λft)

← ft(1− 2ηtλ) + 2ηt(yt − ft(xt))K(xt, ·)

where ηt is the learning rate at time step t.

The update rule is equivalent to:

– Adding a kernel K(xt, ·) weighted by 2ηt(yt − ft(xt)).

– Shrinking all other weights by (1− 2ηtλ) multiplier.

3

• SVM loss function L(f)

L(f(xt), yt) = max(0, 1− ytf(xt)) + λ||f ||2 (8)

The sub-gradient ∇L has two cases. One where the prediction is correct by margin = 1, and
the other where is not correct by margin = 1 (margin error).

∇L((xt), yt) =

{
0 if (1− yif(xi)) ≤ 0, correct by margin

L′(f(xt), yt)f
′(xt) = −ytK(xt, ·) else margin error

(9)

The update rule is equivalent to:

– Adding a kernel K(xt, ·) weighted by ηtyt in case of margin error.

– Shrinking all other weights by (1− 2ηtλ) multiplier.

What is the square loss for the linear predictor?

Lt(w) = λ||w||2 + (wtxt − yt)2 (10)

We want to control complexity- aka penalize the size of the function? What does the loss
function for SVM look like– hinge loss.

If we run this repeatedly with different L’s,

– only get kernels when we make mistakes

– once you start getting it right, weights shrink

– only end up iwth kernels at places called support vectors

3 Online Kernel Machine

• Initialize the function f = 0.

• For t = 1 to T:

1. Observe some measurement over some set of features xt

2. Predict the class using f(xt) =
∑n

i=1 αiK(xi, xt)

3. Receive loss based on the prediction from f(xt) and the true class yt

L(f(xt), yt)

4. Update f based on the gradient of the loss function L and learning rate ηt depending
on the chosen algorithm (examples in previous section).

4

3.1 Discussion

• Representer Theorem (informally): Given a loss function and regularizer objective with
many data points {xi}, the minimizing solution f∗ can be represented as

f∗(·) =
∑
i

αiK(xi, ·) (11)

• This algorithm qualitatively corresponds to adding weighted ’bumps’ that predicts some value
based on the kernel function in each new observation’s neighborhood of the feature space in
x. For example: Figure 1 shows an update over 3 points {(x1,+), (x2,−), (x3,+)}. The
individual kernels centered at the points are independently drawn with colored lines. After
3 updates, the function f looks like the solid black line.

Figure 1: Illustration of function after 3 updates

• Need to perform O(T) work at each time step. As time progresses and the data set grows,
the prediction step will take longer and longer to compute. To shorten this computation time
you may want to throw out old data points by weight or age. If interested, there are some
papers on that use tricks to find sparse solutions to large-scale problems:

– Rahimi and Recht - Random Features for Large-Scale Kernel Machines 2007

– Dekel, Shalev-Shwartz and Singer The Forgetron: A Kernel-Based Perceptron on a Bud-
get 2007

• The regret is computed as:

Regret =
∑
t

(Ct(ft(xt))− Ct(f
∗(xt))) | f∗ ∈ Hk

The regret bound:
Regret = ||∇Ct(f)||k · ||f∗||k

√
T

||f∗|| is the size of the function. ||∇Ct(f)|| can get as big as αTKα.

• The choice and tuning of the kernel and their corresponding bandwidth parameters are what
affect the bias-variance tradeoff. These are parameters that need to be tuned in addition to
the learning rate η and decay rate λ from the update equations.

– Often simple kernels work quite well. When approaching a new problem it is usually
a good idea start with linear or polynomial kernels. Radial basis functions are another
good kernel to try early on. Note that any kernels K1 and K2 that satisfy the conditions
mentioned in Section 2 can be summed to form a new valid kernel.

5

