
Statistical Techniques in Robotics (16-831, F14) Lecture #01 (Tuesday, August 26)

Introduction to Filtering

Lecturer: Drew Bagnell Scribe: Karthik Lakshmanan

Note 1. Based on the work of Bryan Hood and Juan Pablo Mendoza. Some wording is taken from
Wikipedia

1 Probability

1.1 Definitions

A Random Variable1 is a measurable function from the probability space to a measurable space,
known as the state space. Usually, random variables are denoted with a capital letter (e.g. X, Y ,
A ...). For example, a random variable might be the outcome of a coin flip, which takes one of two
possible values: heads or tails. For a fair coin, P (X = head) = P (X = tail) = 0.5.

In the discrete random variable case, such as a coin flip, the probability mass function (PMF) is a
function that assigns a probability value for each specific value of a random variable. Values of the
PMF must sum up to 1.

In the case of a continuous random variable, the probability density function (PDF) is the function
that represents the relative likelihood of the random variable to take a given value. The probability
for the random variable to fall within a particular region is given by the integral of this variable’s
density over the region: P (a ≤ X ≤ b) =

∫ b
a p(x)dx.

The PDF must always integrate to 1:
∫
p(x)dx = 1

For a continuous random variable, the probability that the random variable takes a specific value
x is zero, or infinitesimally small. In other words: P (X = x) = 0.

1.2 Probability Axioms

The axioms of probability are:

• 0 <= P (x) <= 1

• P (true) = 1

• P (false) = 0

• P (X ∨ Y ) = P (X) + P (Y )− P (X ∧ Y ), (see Figure 1)

From these axioms only we can prove several other statements, such as P (¬X) = 1− P (X).

1It is not random and it is not a variable; it is easier to think of a random variable as an unknown quantity.
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Figure 1: The probability of the event X or Y is the sum of the probability of X and the probability
of Y subtracted by the probability of X and Y. We subtract the union of X and Y to prevent
overcounting.

The Gaussian PDF is probably the most commonly used PDF. It is parameterized by two values:
the mean (µ) and the variance (σ2). It is defined as:

p(x) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)
(1)

This definition can be generalized for a multidimensional random variable X ∈ Rn, by replacing
the mean with a mean vector and replacing the variance with a symmetric positive semidefinite
matrix, called the covariance matrix (Σ). This is called a multivariate Gaussian distribution and
can be written as:

p(x1, . . . , xn) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2)

1.3 Conditional Probability and Independence

P (X = x|Y = y) is the probability that X takes the value x if we know that Y takes the value y.
X and Y are said to be independent if P (X|Y ) = P (X), or equivalently, P (X,Y ) = P (X)P (Y ).

P (X|Y ) =
P (X,Y )

P (Y )

1.4 Chain Rule for Probability

An extremely useful result that follows from the definition of conditional probability is the chain
rule for probability, stated here for 3 random variables (but can be extended for however many).
P (X1, X2, X3) = P (X1)P (X2|X1)P (X3|X1, X2)
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1.5 Expectation and Variance

Given a random variable X, that can take on value x1 with probability p1 and x2 with probablity
p2 and so forth through value xn and probability pn, the expectation of X is defined as

µ = E[X] =
n∑

i=1

xipi (3)

The expectation of X is an indicator of the mean or first moment of the random variable.

The variance of a random variable is a measurement of the spread of the values that the random
variable can assume and is expressed as

V ar(X) = E[(X − µ)2] (4)

= E[X2]− (E[X])2 (5)

1.6 Law of large numbers

The law of large numbers states that, given a set of independent and identically distributed samples
from a distribution, the sample average evolves towards the expected value, as the number of
samples approaches infinity. For example, as a robot takes more sonar measurements, the average
of the samples would converge to the expected value of the sonar measurement. For a random
variable X let the sample average be x̄n = 1/n(x1 + · · ·+ xn). Then, limn→∞ P (|x̄n − µ| > ε) = 0.

1.7 Bayes’ Rule

The conditional probability of x given y, represented as P (X = x|Y = y) and P (x|y) in shorthand,
is the probability of x given that y has occurred. The conditional probability is the probability of
the union of events x and y divided by the probability of event y.

P (x|y) = P (x, y)/P (y) (6)

Bayes’ rule provides a way to calculate the posterior (P (x|y)) given the likelihood (P (y|x)), using
the prior (P (x)) and the evidence (P (y)):

P (x|y) =
P (y|x)P (x)

P (y)
=

P (y|x)P (x)∑
x′ P (y|x′)P (x′)

(7)

The evidence is also known as the normalization factor and is used to ensure that the posterior
distribution integrates to 1. In many cases, η, or 1/Z is used to denote the normalizing constant:
P (x|y) = ηP (y|x)P (x).

Example: Suppose z is the measurement we get from a range-finder that is pointed at a doorway.
We want to calculate our belief on the state of the door - open or closed. i.e., we are interested in
P (open|z), also known as the ’diagnostic’ probability. Usually, it is easier to specify the ’causal’
probability P (z|open). Bayes’ rule helps us calculate P (open|z) from P (z|open). This trick is
especially useful when we have multiple measurements z1, z2..., as we will see soon while deriving
the Bayes Filter.
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1.8 Indicator Function

An indicator function is a function defined on a set X that indicates the membership of an element
in a subset A.

1A(x) =

{
1 if x ∈ A,
0 if x /∈ A.

(8)

2 State Estimation

State estimation is the problem of estimating a system’s non directly observable state from its
observable outputs; the state of the system is a vector of values that fully describe the robot and
its world 2.

2.1 Filtering

In filtering, we want to obtain an estimate of state xt (st is also commonly used) over time. For
example, in a localization problem xt is the pose of the robot. In mapping, the state is the map of
the world, and in SLAM, the state is both.

Inputs to a general filtering problem are:

Data: Time-indexed set of observations z1:t (also used are y1:t and o1:t) and control actions u1:t
(also a1:t). Generally, the robot observes the environment and performs a control action at
every time step. Data can be denoted as: d = {z1:t, u1:t}.

Initial probability: The probability distribution of the initial state p(x0).

Motion model: Also called action model, transition probabilities, Markov kernel, plant and tran-
sition kernel; It is a model that relates the probability of the current state to the previous
state and the action taken: p(xt|xt−1, ut)

Sensor model: Also called observation model, measurement model, emmision probabilities; It is
a model of how measurements are generated at each state: p(zt|xt).

See Figure 2 to see the evolution of control, states and observations.

2.2 Belief distribution

A belief is a reflection of the robot’s internal knowledge about the state and it is represented through
conditional probability distributions.

bel(xt) = p(xt|z1:t, u1:t), (9)

which is the posterior probability over state variables conditioned on data (observations and ac-
tions).

2In reality, the state never truly captures every aspect of the world
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Figure 2: Evolution of controls, states, and observations in a Markovian processs (see Section 2.3).
Pay no attention to the pointer to zt.

2.3 The Markov Assumption

The Markov assumption states that the probability distribution of future states of the robot depends
only upon the present state, and not on past ones. While the Markovian world assumption may
not be realistic in many situations3.

For an observation model, the Markov assumption can be expressed as:

P (zt|x0, x1, u1, z1, . . . , xt, ut, zt−1) = P (zt|xt) (10)

And for an action model

P (xt+1|x0, x1, u1, z1, . . . , xt, ut, zt−1, ut+1) = P (xt+1|xt, ut+1) (11)

3 Questions

1) Q: Do measurements always make p(x|z) more concentrated? A: On average, measurements al-
ways increase the concentration or certainty of the state, but a specific measurement could decrease
the certainty.

2) Q: Do actions always increase uncertainty? A: Generally, yes, but in some cases they reduce
uncertainty. For example, if a robot knows there is a wall in front of it somewhere, but does not
know its own location, it can drive forward for a long period of time and be certain that it is up
against the wall.

3For example, if a robot’s state consists only of its position in the world, but not the time of the day, there could
be correlations between subsequent observations that violate the Markovian assumption (e.g., video frames taken
during the day will be different than those taken during the night).
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