
Statistical Techniques in Robotics (16-831, F14) Lecture#13 (Otc 14)

Online Convex Programing

Lecturer: Drew Bagnell Scribe:Minh Vo 1

1 Online gradient descent

1.1 Instantaneous regret

Let li = (wT
t fi − yi)2 our loss functions, where w is an expert and f is a feature. We want to

minimize the total regret in retrospect with respect to the best expert w∗:

R(w) =
T∑
t=0

lt(wt)− lt(w∗). (1)

We call lt(wt)− lt(w∗) the instantaneous regret for some wt at time t.

1.2 Global lower bound property of projected subgradient

As we all know, subgradient ∇f(x) at point x has the property that f(y) ≥ f(x) +∇f(x)T (y − x)
for any x 6= y.For our instantaneous regret, we have

lt(w
∗) ≥ lt(wt) +∇lt(wt)

T (w∗ − wt)

lt(wt)− lt(w∗) ≤ ∇lt(wt)
T (wt − w∗).

(2)

The left hand side is the instantaneous regret, and the right hand side is some linear func-
tion times (wt − w∗). Thus our total regret, R(w) =

∑T
t=0 lt(wt) − lt(w

∗), will be bounded by∑T
t=0∇lt(wt)

T (wt − w∗).

1Some content adapted from previous scribes: Siyuan Feng and Ji Zhang.

1

1.3 Algorithm for projected online subgradient descent

This algorithm is a method to minimize the regret for a online convex optimization problem.
Line 5 projects ŵt+1 back into the convex set C, and α in line 4 is the learning rate. Smaller α

Algorithm 1 Projected Subgradient Descent():

1: choose w0

2: for t = 1...T do
3: Incur loss l(wt) and receive any ∇lt(wt)
4: ŵt+1 ← wt − α∇lt(wt)
5: wt+1 ← Projc[ŵt+1]
6: end for

pays a larger upfront cost but is more likely to converge and has a lower regret over time. α can
also be dependent on t. Note that the projection will not cause the loss to grow, because it will
bring ŵt+1 closer to any member of C, and thus closer to the optimal expert w∗ too.

2 Regret bounds for projected subgradient descent

2.1 Distance between wt and w∗

The distance between wt and w∗ at time t is defined as

D(wt, w
∗) = (wt − w∗)T (wt − w∗) (3)

Now we look at

D(wt+1, w
∗)−D(wt, w

∗)

= (wt − α∇lt(wt)− w∗)2 − (wt − w∗)2

= (zt − α∇lt(wt))
2 − z2t

= α2(∇lt(wt))
2 − 2α∇lTt (wt)zt,

(4)

where zt = wt − w∗. If we sum all the term over time, the intermediate terms will all cancel out
and leave us just D(wT , w

∗)−D(w0, w
∗).

=
∑
t

D(wt+1,w∗)−D(wt, w
∗)

= −2α
∑
t

(wt − w∗)∇lt + α2
∑
t

|∇lt|2

= D(wT , w
∗)−D(w0, w

∗)

≤ −2α
∑
t

(wt − w∗)∇lt + α2GT,

(5)

where |∇lt|2 ≤ G. Thus we have

2αRT ≤ 2α
∑
t

(wt − w∗)∇lt ≤ D(w0, w
∗)−D(wT , w

∗) + α2GT (6)

2

Since the distance between wT and w∗ is always non negative, we can throw away the D(wT , w
∗)

term and still keep the inequality valid.

RT ≤
∑
t

(wt − w∗)∇lt ≤
D(w0, w

∗)

2α
+
αGT

2
≤ αGT

2
+
F

2α
, (7)

where F is the largest distance between any two experts in the set.

Suppose we set alpha =
√

F
GT , then the upper bound for total regret is bounded by

√
GTF , growing

sub linearly of T .

3 Portfolio Optimization - No Regret Portfolio

3.1 General algorithm description

We want to invest in n different stocks given a set of investment weights wi s.t. wi ∈ R, wi ≥ 0, and∑
wi = 1. We also know the market returns ratios ri =

valueit+1

valueit
. So the daily increase in wealth

is wT
t rt, and the total wealth over time is

∏
tw

T
t rt We want to maximize log ΠwT

t rt =
∑

logwT
t rt.

We can use use the following algorithm:

w0 ←
1

n
(8)

wt+1 ← Proj[wt +
αrt

wT
t rt

] (9)

We will optimize
∑

logwT
t rt instead of the original cost wT

t rt. The procedure of this problem is
described in Algorithm 1.

In the next lecture, we will look at the regret bound along with some problems of applying the
naive version of this algorithm in the real world.

3

