
Statistical Techniques in Robotics (16-831, F14) Lecture #15 (Wednesday October 21st)

Learning by Constraints and SVMs

Lecturer: Drew Bagnell Scribe: Annie Holladay, Sanjiban Choudhury 1

We have seen that Online Convex Programming (OCP) has many applications, from optimizing
investment portfolios to inferring terrain supporting surfaces in front of robots. We shall now
explore “support vector” methods, which are OCP for learning. The connection will be made by:

• Thinking of data as (soft) constraints

• Turning these constraints into objective functions

1 Support Vector Applications

1.1 “Little Dog” walking robot - A Ranking problem

(a) (b)

Figure 1: (a) Rough terrain navigation by Little Dog robot (b) Expert provides preference (left v/s
right) of which instance should have lower cost and the system learns a cost function over terrain
features

One example of a support vector application is crossing terrain with the robot Little Dog. At a
high level, a cost function can be defined that considers how long it takes the robot to cross the
terrain and how close it comes to tipping over. At the level of planning individual footsteps as
shown in Figure ?? (a), though, such a cost function does not apply. It can, in fact, be difficult to
determine the cost function for footstep planning.

A place to start would be to enlist the features on which the cost function may depend on such as

• Height of new location form current foot location

• Distance of new location from current foot location

• Stability of new configuration (using the support triangle)

1Some content adapted from previous scribes: Karthik Lakshmanan

1

• Local concavity of new location

These features can be stacked into a feature vector f . We can now assume a linear cost function
structure wT f . The problem then is to determine the right w such that better footstep locations
score higher than worse ones. Since guessing the cost function is hard, a human user is given two
pieces of terrain for comparison with the option of choosing which would be better for robot foot
placement as shown in Figure ?? (b). A cost function can then be generated from the learned data,
over a few hundred examples, using regression. We try to find a w such that the rankings made by
our goodness metric is as consistent as possible with the human’s judgement.

1.2 Sports Examples (College Football)

This technique for learning cost functions can be extended to other problems. For example, there are
continuous or discrete rankings of teams in sports. In football and basketball rankings are created
to decide which team might be ’better’, or more likely to win. Cost features can be generated for
two teams through their pairwise comparison.

Example features, which could be used to predict the outcome of a game, could include:

• Number of wins in previous year

• Number of returning All-American players on the team

• Average points per game of the team

• Human ranking of the team determined by the Associated Press (AP) poll

• Booster club budget

• etc...

2 Implementation

For each example where one instance is judged to be preferable to another, a constraint can be
formed as wT fn ≤ wT fp where w is a vector of weights, f is a feature set, and the preferred and
not preferred instances are denoted by superscripts n and p, respectively.

Multiple constraints, indexed i = 1, ..., T , can then be compiled in the form:

wT fn1 ≤ wT f
p
1

wT fn2 ≤ wT f
p
2

...

wT fnT ≤ wT f
p
T

There are several issues, however, with the constraints as they are now written.

2

1. There may not be a set of weights that satisfy all of the constraints. The human trainer
may not have been consistent. (Eg. non-transitive ranking: wT f1 ≤ wT f2, wT f2 ≤ wT f3,
wT f3 ≤ wT f1 Think of the case where Team A beats Team B, Team B beats C and C beats
A.)

2. There can be multiple solutions - weights can be scaled and still satisfy the constraints.

3. There is a trivial solution of w = 0. (Note: we don’t want to constrain ‖w‖ ≥ r, as this
results in a non-convex problem)

You might be tempted to fix these problems with hacks. Drew does not like hacks.

1. “Can we make the inequality strict to alleviate problem 2?” This often leads to an ill-posed
optimization problem. Often the objective might have a minima on the boundary of the
feasible set - if the boundary is not included (as is the case with a hard inequality), the
solution is undefined. For example, the problem minx2 such that x > 0 is ill-posed.

2. “Can we fix problem 2 by excluding 0?” This makes the set non-convex (the feasible space is
Rn − {0}).

Adding a margin

Both issue 2 and issue 3 can be addressed by introducing a margin of 1. This implies

wT fp ≥ wT fn + 1

The choice of 1 here is arbitrary. Choosing another constant simply means rescaling w.

An open question at this point is what to optimize? If we go back to the OCP formulation, the
regret bounded depended on the size of the convex set we were optimizing over. Minimizing the
size of this set, minimizes the regret. Here the size is ||w||. Hence a plausible formulation can be
Objective function: min||w||2, subject to:

wT fn1 ≤ wT f
p
1 − 1

wT fn2 ≤ wT f
p
2 − 1

...

wT fnT ≤ wT f
p
T − 1

This is known as Hard Margin Support Vector Ranking. Observe that the set of constraint forms
the intersection of a unit ball and a number of half planes, which make it a convex problem.

Constraint Softening

Issue 1 is still an open question - how does one deal with violations of the constraint? One suggestion
is to minimize the number of violations. This is a very hard combinatorial optimization problem
which might be very expensive to solve. Also, it is not obvious that this is a criteria one would

3

want to optimize. If two teams are very close to each other, who is better shouldnt change the
ranking function dramatically.

Issue 1 can be addressed with the addition of a slack variable ξi, where ξi ≥ 0. This says that it
is ok for constraint i to be satisfied by a margin that is ξi less than 1. If a judgment is wrong,
the slack variable can be increased until the constraint is satisfied, though a price is paid with an
increase of the total cost. The objective function and constraints are now:

Objective function: min
w,ξ

(
λ

2
||w||2 +

T∑
i=1

ξi

)
, subject to:

wT fn1 ≤ wT f
p
1 − 1 + ξ1

wT fn2 ≤ wT f
p
2 − 1 + ξ2

...

wT fnT ≤ wT f
p
T − 1 + ξT

where lambda trades off cost of violating constraints vs. having high weights:
Smaller λ→ allows larger (growing) set of weights, longer to learn but violate less constraints.
Larger λ→ forces smaller (constrained) set of weights, learn initially faster.
Larger weights = smaller margin, and smaller weights = larger margin.
Note that we can also write each constraint in terms of the slack variable:

ξi ≥ wT∆fi + 1 where ∆fi = fni − f
p
i .

Online Support Vector Ranking

The maximum margin approaches discussed above (for either hard or softened constraints) minimize
an objective function quadratic in w (and ξ) subject to constraints linear in w (and ξ). This is
the classical setup of a quadratic programming problem (QP). In practice, solving such problems
using QP can take a considerable amount of time since the time scales cubically with the number
of constraints. We can, instead, turn it into an online problem, eliminating the constraints. The
resulting approach, called Support Vector Ranking, is easy to implement and very fast; it can also
be applied in an online setting, if required.

Considering again cases with conflicting constraints, we can define a bound on our slack variables ξi.
If a constraint is met within the margin, ξi is not needed and is equal to zero. If wT (∆fi) + 1 > 0,
where the judgement is wrong or not within the margin, ξi is required, but will never need to be
greater than ξi = wT (∆fi) + 1. At that point, the constraint is already met with margin, and any
further increase would only increase cost. The objective function can now be written as:

min
w

(
λ

2
||w||2 +

T∑
i=1

max(0, wT∆fi + 1)

)

or equivalently:

4

min

T∑
i=1

(
λ∗

2
||w||2 +max(0, wT∆fi + 1)

)

Where λ∗ = λ
T . We can drop the star notation and note that λ has absorbed T .

At each time step (i.e. for each training example), our loss function is now:

lt = λ
2 ||w||

2 +max(0, wT∆ft + 1)

This is called the hinge loss, and is convex (in fact, it is strongly convex) and entirely unconstrained!
It is not differentiable, but subgradients exist everywhere. As can be seen in figure below, the
subgradient of the hinge loss can fall within one of three cases. When wT∆fi < −1 (corresponding
to correctly ranked examples, constraint i is satisfied with margin), the subgradient is λw. When
wT∆fi > −1 the subgradient is λw + ∆fi. The third case, wT∆fi = −1 can be placed in either of
the two previous cases, since there are multiple valid subgradients.

3 Online Support Vector Ranking Algorithm Outline

Set w0 = 0
for i = 1,2 T do

wt+1 = wt − αtλwt (tries to increase margin)
if a misranking occurred or constraint not satisfied by margin then

wt+1 = w∗t+1 − αt(fnt − f
p
t)

else
wt+1 = w∗t+1

end

end

Note:

• Projection is not required because there are no constraints left in the reformulated problem.

• Iterate - May need to pass through data multiple times and data order should be randomized.

5

• αt = 1√
t

gives us no average regret. In fact, this is strongly convex and αt ∝ 1
t also gives no

regret!

4 Linear SVMs

We begin by considering binary, linear classification. In this problem, we are trying to map elements
from our feature space into the set {−1, 1}. When we have two features, F1, F2 ∈ R, we can think
of the problem graphically. In the Figure ??, we represent the points with a label of 1 as O’s, we
the points with a label of −1 as X’s. We wish to find a linear decision boundary (a straight line)
that separates the points from each class. The decision boundary is shown as the dotted line.

X

X

X

X

O

O

O

O

F1

F2

Figure 2: Linear binary classification

To represent this notion mathematically, we denote the ith training point as fi, and the class of
this point as yi. The linear classification problem requires us to find a set of weights w such that:

∀i yiwT fi ≥ 0 (1)

Note that the decision boundary need not pass through the origin. We often use a dummy variable
F0 = c for constant c 6= 0, which allows us to use w0 as an offset.

One issue with this formulation of the problem is that it has a trivial solution. Specifically, if we
set all of our weights to 0, we will have yiw

T fi = 0 for all points. To address this issue, we modify
our constraints to be:

∀i yiwT fi ≥ margin (2)

This can have the added benefit of improving generalization. Once again, we can represent this
graphically. In the Figure ??, the space between the dotted line and the decision boundary repre-
sents the margin.

6

X

X

X

X

O

O

O

O

F1

F2

Figure 3: Linear binary classification with margins

We further see that the magnitude of our weight vector does not matter, only the orientation affects
classification. Therefore we can restrict w to ||w||2 = 1. Taken together, this yields the following
formulation:

Maximize margin
Such that ∀i yiwT fi ≥ margin

||w||2 ≤ 1

We use ||w||2 ≤ 1 instead of ||w||2 = 1 to make sure that our problem remain convex. Note that
we do not include a bias term; we can incorporate a bias by simply adding a 1 at the end of each
input vector. This means we are regularizing the bias in this formulation of the SVM, though the
original SVM papers did not.

This problem is generally solved in an equivalent form that is easier to optimize, where we hold the
margin fixed and minimize the magnitude of the weights:

Minimize ||w||2
Such that ∀i yiwT fi ≥ 1

margin > 0

This last formulation is an example of a quadratic program, which we are able to solve efficiently.
Unfortunately, the hard margin SVM requires that the data be linearly separable, which is almost
never the case. To address this issue, we introduce a slack variable, ξ. The problem now becomes:

Minimize λ||w||2 +
∑
i

ξi

Such that yiw
T fi ≥ 1− ξi

ξi ≥ 0
margin > 0

7

There will be one slack variable ξi to correspond to each of the T data-points that we are consid-

Figure 4: Linear binary classification with margins and slack variables.

ering. In Figure ??, the correctly labeled points have ξi = 0, and the incorrectly labeled x-point
has ξ = 1− yiwT fi shown by the red arrow.

Many SVM solvers further transform this optimization into a dual form, where the weight vector w
is written as a linear combination of the support vectors, and this linear combination is optimized
rather than optimizing w directly. This allows us to formulate nonlinear versions of the SVM, but
this is beyond the scope of the class.

4.1 Gradient Descent

To perform gradient descent, we first observe that ξ = max(0, 1−yiwT fi), because the slack variable
is 0 if this point is labeled correctly. If it is not labeled correctly (as described in previous sections),
ξ = 1− yiwT fi. Any higher values of ξ are penalized. This allows us to generate the loss function

lt = λ||w||2 + max(0, 1− ytwT ft) (3)

Our update for w is now as follows. If the output was correct by at least the margin, the only
contribution to the loss is the magnitude of w:

w ← w − 2αtλw (4)

And if the output for this time step was incorrect or not outside the margin (ξ > 0),

w ← w − 2αtλw + αtytft (5)

We note that this loss function is not minimizing the number of mistakes made by the algorithm. In
fact, solving this problem with a 0-1 loss function (which would minimize the number of mistakes)
is known to be NP-hard. We can visualize the difference between these loss functions in Figure ??,
in which Z = wT fi:

8

0

1

Z 1

Hinge loss

Mistake loss

Figure 5: Loss functions

Our loss function, the hinge loss function, is convex, while the mistake loss (0-1 loss) function is
not. However, we do see intuitively that the loss function we are using is the best “convexification”
of the NP-hard problem. In practice the convexified loss is more appropriate anyway, since we
generally want to minimize “how wrong” we are when we do mislabel a point.

4.2 Selecting αt

• First idea is to set αt proportional to 1√
t
.

• To analyze our regret: We have T elements, each with a maximum value of F (span of the
convex set). The maximum gradient, G, is

√
TF . This results in a regret that is R ≤

√
FGT .

Alternatively, let’s assume ||wt|| < Cγ, where C is some constant, and our features are
normalized to [−1.1] (so the max range of feature values is 2). Then, we note that ||∇lt||2 ≤
1/Nγ + C4N , where N is the number of data points. In general, G ≥ ||∇||2, therefore
G = 4N .

• This is not as good as we could do.

• Notice that lt is an extremely good convex function. It is a quadratic plus a convex function.
In the same way all convex functions lie above a line (a subgradient) from every point, lt lies
above a quadratic from every point.

• Specifically, if it is always the case that

f(y) ≥ f(x) +
H

2
(y − x)2 +∇fTx (y − x) (6)

then f(x) is said to be H-strongly convex.

• In this case lt is λ-strongly convex.

• If αt = G
Ht , then regret≤ G2

H (1+log t). log t is really good, and this learning rate and algorithm
is essentially the current best for this class of problem.

9

5 Multiple Classes

What if we had 3 classes, say Apples, Oranges and Grapes. Given an item we would like to
classify it into one of these classes. We maintain a weight vector w for each class, i.e. we have
wapple, worange, wgrapes.

Suppose instance i is an Apple, then we can generate two constraints to satisfy per datapoint:

(wapple)T f i ≥ (worange)T f i + 1− ξ1i
(wapple)T f i ≥ (wgrapes)T f i + 1− ξ2i

...

6 Cost Weighted Learning

If you care more about satisfying some constraints, you can consider:

• Replicate the constraints so that they are accounted for multiple times (but adds computation
time)

• Scale the margins

• Scale the slack variables ξi (this works best in practice)

10

