
Statistical Techniques in Robotics (16-831, F14) Lecture#17 (Tuesday November 4)

Kernel methods and Bayesian linear regression

Lecturer: Drew Bagnell Scribe:Arun Srivatsan 1

1 Revisiting Reproducing Hilbert Spaces

Recall form the previous lecture that a function f ∈ HK is a weighted sum of kernels centered at
various locations xi:

f(·) =

N∑
i=1

αiK(xi, ·),

where K must be symmetric: K(xi, xj) = K(xj , xi). Also kernel K must be positive definite, i.e.,
if we define Kij = K(xi, xj), then K must be positive-semidefinite. For two functions f, g ∈ HK ,
we define an inner product over the RKHS HK as follows:

〈f, g〉 =
∑
i

∑
j

αiβjK(xi, xj) = αTKβ, where

f =
∑
i

αiK(xi, ·)

g =
∑
j

βjK(xj , ·)

This now allows us to define a norm (or seminorm) over HK as follows:

||f ||2 = 〈f, f〉

K(·, ·) is a reproducing kernel of a Hilbert spaceH if ∀f ∈ H, f(x) = 〈K(x, ·), f(·)〉 The reproducing
property is observed by taking the inner-product of a function with a kernel 〈f,K(x∗, ·)〉 and
functional E:

Ex∗ [f ] = 〈f,K(x∗, ·)〉

= 〈
Q∑
i=1

αiK(xi, ·),K(·, x∗)〉 =

Q∑
i=1

αi〈K(xi, ·),K(·, x∗)〉 =

Q∑
i=1

αiK(xi, x
∗)

= f(x∗) evaluated atx∗

A very commonly used kernel is the RBF or Radial Basis Function kernel, which takes the form
K(xi, xj) = exp −1

γ ||xi = xj ||2.

1Some content adapted from previous scribes: Carl Doersch, Liz Cha. Content also adapted from class notes
taken by Shaurya, Abhijeet and Rushane.
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2 SVM loss with online Kernel

The SVM loss is given by: Lt = max(0, 1− yif(xi)). The sub-gradient ∇Lt has two cases:

∇Lt = 0 if 1− yif(xi) < 0 correct by margin

= −yiK(xi, ·) else margin violation

The update rule is equivalent to:

• Adding a Kernel K(xi, ·) weighted by ηiyi in case of margin error, where ηi is the learning
rate at ith step.

• Shrinking all other weights

Some important points to note are:

• Number of kernels within constant factor of total points.

• Does not scale well to very large number of data points

• Kernel methods are good when small data, complicated features

• Linear SVM methods are good when large data and simple features

3 Representer Theorem

Given a loss function and regularizer objective with many data points xi, the minimizing solution
f∗ can be represented as

f∗(·) =
∑
i

αiK(xi, ·).

This algorithm qualitatively corresponds to adding weighted ‘bumps’ that predicts some value
based on the kernel function in each new observations neighborhood of the feature space in x. For
example: Figure 1 shows an update over 3 points (x1,+), (x2, ), (x3,+). The individual kernels
centered at the points are independently drawn with colored lines. After 3 updates, the function f
looks like the solid black line.

Figure 1: Illustration of function after 3 updates
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Need to perform O(T ) work at each time step. As time progresses and the data set grows, the
prediction step will take longer and longer to compute. To shorten this computation time you may
want to throw out old data points by weight or age.

The regret bound is:

Regret ≤
√
F 2G2T ,

where F 2 = ||f − f∗||K , G2 = K(xi, xi).
Often simple kernels work quite well. When approaching a new problem it is usually a good idea
start with linear or polynomial kernels. Radial basis functions are another good kernel to try early
on. Note that any kernels K1 and K2 that satisfy the conditions of a kernel can be summed to
form a new valid kernel.
What K gives the same behaviour as linear SVM?
Linear Kernel K(x, y) = xT y.
Online learning looks like Bayes rule. Bayes rule as an instance of online learning. Find loss fuction
Lt, learning rate αt such that Gaussiam Weighted Majority gives back Bayes rule.
Prior in weighted majority, wi = pi, where

∑
i
pi = 1 and pi ≥ 0. W =

∑
i
wi and e∗ is some expert

and m∗ be the number of mistakes that e∗ makes and m be the number of mistakes the algorithm
makes. Then we have:

2m
∗
p∗ ≤W ≤ 3

4

m

⇒2m
∗
p∗ ≤W ≤ 4

3

−m

⇒m∗ + log2 p
∗ ≤ log2W ≤ −m log2

4

3

⇒m ≤ 2.41(m∗ + log
1

p∗
)

4 Bayesian Linear Regression (BLR)

In linear regression, the goal is to predict a continuous outcome variable. In particular, let:

• θ = parameter vector of the learned model

• xt ∈ R = set of features at every timestep, used for prediction

• yt ∈ R = true outcome

Then our model is as follows:
yt = θxt + εt,

where εt is a noise independent of everythign else. This has the following form yT N(θTxi, σ
2).

Thus the likelihood if θ is known is:

P (y|x, θ) =
1

Z
exp

θx

2σ2
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Figure 2: Graphical model of Bayesian Linear Regression

In BLR, we maintain a distribution over the weight vector θ to represent our beliefs about what θ
is likely to be. The math is easiest if we restrict this distribution to be a Gaussian: θ ∈ N(, )

P (θ) =
1

Z
exp
−(θ − µ)TΣ−1(θ − µ)

2
,

where Σ is positive definite. This is called moment parameterization of a Gaussian.
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