
Statistical Techniques in Robotics (16-831, F14) Lecture#NN (Tuesday November 4)

Kernel methods and Bayesian linear regression

Lecturer: Drew Bagnell Scribe:Arun Srivatsan 1

1 Revisiting Reproducing Hilbert Spaces

Recall form the previous lecture that a function f ∈ HK is a weighted sum of kernels centered at
various locations xi:

f(·) =

N∑
i=1

αiK(xi, ·),

where K must be symmetric: K(xi, xj) = K(xj , xi). Also kernel K must be positive definite, i.e.,
if we define Kij = K(xi, xj), then K must be positive-semidefinite. For two functions f, g ∈ HK ,
we define an inner product over the RKHS HK as follows:

〈f, g〉 =
∑
i

∑
j

αiβjK(xi, xj) = αTKβ, where

f =
∑
i

αiK(xi, ·)

g =
∑
j

βjK(xj , ·)

This now allows us to define a norm (or seminorm) over HK as follows:

||f ||2 = 〈f, f〉

K(·, ·) is a reproducing kernel of a Hilbert space H if ∀f ∈ H, f(x) = 〈K(x, ·), f(·)〉

2 SVM loss with online Kernel

The loss is given by: Lt = max(0, 1− yif(xi)). Thus we have:

∇Lt = 0 if1− yif(xi) < 0 correct by margin

= −yiK(xi, ·) else margin violation

• Number of kernels within constant factor of total points.

• Does not scale well to very large number of data points

• Kernel methods are good when small data, complicated features

• Linear SVM methods are good when large data and simple features

1Some content adapted from previous scribes: Carl Doersch
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3 Representer Theorem

Regret ≤
√
F 2G2T , where F 2 = ||f − f∗||K , G2 = K(xi, xi). What K gives the same behavious as

linear SVM?
Linear Kernel K(x, y) = xT y. Online learning looks like Bayes rule. Bayes rule as an instance of
online learning. Find loss fuction Lt, learning rate αt such that Gaussiam Weighted Majority gives
back Bayes rule. Prior in weighted majority, wi = pi, where

∑
i
pi = 1 and pi ≥ 0. W =

∑
i
wi

and e∗ is some expert and m∗ be the number of mistakes that e∗ makes and m be the number of
mistakes the algorithm makes. Then we have:

2m
∗
p∗ ≤W ≤ 3

4

m

⇒2m
∗
p∗ ≤W ≤ 4

3

−
m

⇒m∗ + log2 p
∗ ≤ log2W ≤ −m log2

4

3

⇒m ≤ 2.41m∗ + log2
1

p∗

4 Bayesian Linear Regression (BLR)

In linear regression, the goal is to predict a continuous outcome variable. In particular, let:

• θ = parameter vector of the learned model

• xt ∈ R = set of features at every timestep, used for prediction

• yt ∈ R = true outcome

Then our model is as follows:
yt = θxt + εt,

where εt is a noise independent of everythign else. This has the following form yT N(θTxi, σ
2).

Thus the likelihood if θ is known is:

P (y|x, θ) =
1

Z
exp

θx

2σ2

In BLR, we maintain a distribution over the weight vector θ to represent our beliefs about what θ
is likely to be. The math is easiest if we restrict this distribution to be a Gaussian: θ ∈ N(, )

P (θ) =
1

Z
exp
−(θ − µ)TΣ−1(θ − µ)

2
,

where Σ is positive definite. This is called moment parameterization of a Gaussian.
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Figure 1: Graphical model of Bayesian Linear Regression

5 Scribed notes

Scribed notes are due a week after the lecture. You may use previous year’s notes as a resource,
but be thorough and improve upon the existing material. If you adapt a previous scribe’s notes,
be sure to acknowledge them.

5.1 Instructions

After you have finished scribing your assigned lecture, you should:

• Upload the pdf to the google group

• Send the source documents (.tex and any figures) to the TA

• . . .

• Profit

We will assemble all scribed notes to serve as a resource for next year’s students.

5.2 Things to change

Before you upload your notes, please remember to change the following:

• Lecture number and your andrewid (file name)

• Lecture number and date (header)

• Lecture topic (header)

• Scribe name (header)

• Any previous scribes (footnote)

Email the TA if you have any questions.
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