Statistical Techniques in Robotics (16-831, F14) Lecture#NN (Tuesday November 4)

Kernel methods and Bayesian linear regression

Lecturer: Drew Bagnell Scribe:Arun Srivatsan '

1 Revisiting Reproducing Hilbert Spaces

Recall form the previous lecture that a function f € Hg is a weighted sum of kernels centered at
various locations x;:
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where K must be symmetric: K(x;,2;) = K(z;,2;). Also kernel K must be positive definite, i.e.,
if we define K;; = K(x;,x;), then K must be positive-semidefinite. For two functions f,g € Hx,
we define an inner product over the RKHS H g as follows:
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This now allows us to define a norm (or seminorm) over Hy as follows:
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K(-,-) is a reproducing kernel of a Hilbert space H if Vf € H, f(x) = (K(x,-), f(+))

2 SVM loss with online Kernel

The loss is given by: L; = max(0,1 — y; f(x;)). Thus we have:
VL =0 ifl —y;f(x;) <0 correct by margin
= —y; K(z;,-) else margin violation
e Number of kernels within constant factor of total points.
e Does not scale well to very large number of data points
e Kernel methods are good when small data, complicated features

e Linear SVM methods are good when large data and simple features

1Some content adapted from previous scribes: Carl Doersch



3 Representer Theorem

Regret < vV F2G2T, where F? = ||f — f*||x, G* = K(x;, ;). What K gives the same behavious as
linear SVM?

Linear Kernel K (z,y) = 2”y. Online learning looks like Bayes rule. Bayes rule as an instance of
online learning. Find loss fuction L;, learning rate «; such that Gaussiam Weighted Majority gives
back Bayes rule. Prior in weighted majority, w; = p;, where > p; = 1 and p; > 0. W = > w;
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and e* is some expert and m* be the number of mistakes that e* makes and m be the number of
mistakes the algorithm makes. Then we have:
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=m" + logy, p* < log, W < —mlog, 3
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=m < 2.41m™ + log, o

4 Bayesian Linear Regression (BLR)

In linear regression, the goal is to predict a continuous outcome variable. In particular, let:

e O = parameter vector of the learned model
o 1; € R = set of features at every timestep, used for prediction

e 1 € R = true outcome

Then our model is as follows:
yr = 0y + €4,

where ¢ is a noise independent of everythign else. This has the following form yr N(07x;, o?).
Thus the likelihood if 8 is known is:
1 Ox
P 0)=— —
(ylz,0) = — exp 5
In BLR, we maintain a distribution over the weight vector € to represent our beliefs about what 6
is likely to be. The math is easiest if we restrict this distribution to be a Gaussian: 6 € N(,)
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where Y is positive definite. This is called moment parameterization of a Gaussian.



Figure 1: Graphical model of Bayesian Linear Regression
5 Scribed notes

Scribed notes are due a week after the lecture. You may use previous year’s notes as a resource,
but be thorough and improve upon the existing material. If you adapt a previous scribe’s notes,
be sure to acknowledge them.

5.1 Instructions

After you have finished scribing your assigned lecture, you should:

e Upload the pdf to the google group
e Send the source documents (.tex and any figures) to the TA

e Profit

We will assemble all scribed notes to serve as a resource for next year’s students.

5.2 Things to change

Before you upload your notes, please remember to change the following:

e Lecture number and your andrewid (file name)
e Lecture number and date (header)

e Lecture topic (header)

e Scribe name (header)

e Any previous scribes (footnote)

Email the TA if you have any questions.



