
Statistical Techniques in Robotics (16-831, F12) Lecture #21 (Nov 14, 2012)

Functional Gradient Descent

Lecturer: Drew Bagnell Scribes: Hanzhang Hu, Eric Westman, Fan Zhang1

1 Goal of Functional Gradient Descent

We have seen how to use online convex programming to learn linear functions by optimizing costs
of the following form:

L(w) =
∑
i

(yi −wTxi)
2︸ ︷︷ ︸

loss

+ λ||w||2︸ ︷︷ ︸
regularization/prior

We want generalize this to learn over a space of more general functions f : Rn → R. The high-level
idea is to learn non-linear models using the same gradient-based approach used to learn linear
models.

L(f) =
∑
i

(yi − f(xi))
2 + λ||f ||2

Up until now we have only considered functions of the form f(x) = wTx, but we will now extend
this to a more general space of functions.

2 Functionals

In the case of functional gradient descent, we’d like to be able to work in a generalized space of
functions, instead of a space of weights. In order to proceed, we will need some notion of functions
on functions, functionals. A functional E : f → R is a function of functions f ∈ HK . In contrast,
an operator accepts a function and returns a function.

• Operator: E : f → f

• Functional: E : f → R

As an example let us write the terms of our loss function from above as functionals:

• E1[f] = ||f ||2

• E2[f] = (y − f(x))2

• E[f] =
∑

i(yi − f(xi))
2 + λ||f ||2

1Based on the scribe work of Daniel Carlton Smith, Abhinav Shrivastava, Varun Ramakrishna, Dave Rollinson,
Daniel Munoz, Tomas Simon, Jack Singleton and Sergio Valcarcel

1

Another simple example of an functional is the evaluation functional, Fx[f], which evaluates f(x)
for a given value of x. Other examples include functionals that return the arclenghth of a function,
or functionals that return the maximum-value of a function.

3 Functional Gradients

A gradient can be thought of as:

• Vector of partial derivatives. In terms functionals, you can consider a function as a infinite
length vector of function values indexed by the independent variables.

• Direction of steepest ascent. (maxf(x+ ∆x), where ∆x is small)

• Linear approximation of the function (or functional), ie. f(x0+ε) = f(x0)+ε·∇f(x0)︸ ︷︷ ︸
gradient

+O(ε2).

We will use the third definition.

A functional gradient ∇E[f] is defined implictly as the linear term of the change in a function due
to a small perturbation ε in its input: E[f + εg] = E[f] + ε〈∇E[f], g〉+O(ε2).

Let’s have a simple example of taking the functional gradient of E[f] = ||f ||2:

• Gradient is ∇E = 2f

E[f + εg] = ‖f + εg‖2 = 〈f + εg, f + εg〉
= 〈f, f〉+ ε〈2f, g〉+ ε2〈g, g〉
= E[f] + ε〈∇E, g〉+O(ε2)

• This is what you would expect from taking derivative of y(x) = x2.

Before computing the gradients for these functionals, let us look at a few tools that will help us
derive the gradient of the loss functional

3.1 Chain Rule For Functional Gradients

Consider differentiable functions C : R → R that are functions of functionals G, C(G[f]). Our
cost function L[f] from before was such a function, these are precisely the functions that we are
interested in minimizing.

The derivative of these functions follows the chain rule:

∇C(G[f]) =
∂C(G[f])

∂λ
|G(f)∇G[f] (1)

Example: If C = (||f ||2)3, then ∇C = 3(||f ||2)2(2f)

2

3.2 Another useful functional gradient

As stated above, one simple but useful functional that we frequently come across is the evaluation
functional. The evaluation functional evaluates f at the specified x: Ex[f] = f(x)

• Gradient is ∇Ex = K(x, ·)

Ex[f + εg] = f(x) + εg(x) + 0

= f(x) + ε〈K(x, ·), g〉+ 0

= Ex[f] + ε〈∇Ex, g〉+O(ε2)

• It is called a linear functional due to the lack of a multiplier on perturbation ε.

4 Review of Kernels

• Ultimately, we wish to learn a function f : Rn → R that assigns a meaningful score given a
data point. For example, in binary classification, we would like an f(·) to return both positive
and negative values, given positive and negative samples, respectively.

• A kernel K : Rn × Rn → R intuitively measures the correlation between f(xi) and f(xj).
Considering a matrix K with entries Kij = K(xi,xj), then matrix K must satisfy the prop-
erties:

– K is symmetric (Kij = Kji)

– K is positive-definite (∀x ∈ Rn : x 6= 0,xTKx > 0)

Hence, a valid kernel is the inner product: Kij = 〈xi,xj〉.

• A function can be considered that is a weighted composition of many kernels centered at
various locations xi:

f(·) =

Q∑
i=1

αiK(xi, ·), (2)

where Q is the number of kernels that compose f(·) and αi ∈ R is each kernel’s associated
weight. All functions f(·) with kernel K that satisfy the above properties and can be written
in the form of Equation 2 are said to lie in a Reproducing Kernel Hilbert Space (RKHS) HK :
f ∈ HK

However to do gradient descent on the space of such functions, we need the notion of a distance,
norm and an inner product. We formalize this by introducing the Reproducing Kernel Hilbert
Space.

5 Reproducing Kernel Hilbert Space

The Reproducing Kernel Hilbert Space (RKHS), denoted by Hk, is the space of functions f(·) that
can be written as

∑
i αik(xi, ·), where k(xi,xj) satisfies certain properties described below.

3

To be able to manipulate objects in this space of functions, we will look at some key properties:

• The inner product of f, g ∈ Hk is defined as

〈f, g〉 4=
∑
i

∑
j

αiβjk(xi,xj) = α>Kβ

where f(·) =
∑

i αik(xi, ·), g(·) =
∑

j βjk(xj , ·), α and β are vectors comprising, respectively,
αi and βi components, and K is n by m (where n is the number of xi in f , and m those in
g) with Kij = k(xi,xj).

Note that this will satisfy linearity (in both arguments):

– 〈λf, g〉 = λ〈f, g〉
– 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉

With this inner product, the norm will be: ||f ||2 = 〈f, f〉 = α>Kα. It is worth noting that α
and β are very negative when opposite each other, and 0 where orthogonal. The two functions
have a lot of overlap if they put ”bumps” at similar places.

• The reproducing property is observed by taking the inner-product of a function with a
kernel 〈f,K(x∗, ·)〉 and functional E:

Ex∗ [f] = 〈f,K(x∗, ·)〉

= 〈
Q∑
i=1

αiK(xi, ·),K(·,x∗)〉 =

Q∑
i=1

αi〈K(xi, ·),K(·,x∗)〉 =

Q∑
i=1

αiK(xi,x
∗)

= f(x∗)︸ ︷︷ ︸
eval @ x∗

An example of a valid kernel for x ∈ Rn is the inner product: k(xi,xj) = xT
i xj . Intuitively, the

kernel measures the correlation between xi and xj .

A very commonly used kernel is the RBF or Radial Basis Function kernel, which takes the form

k(xi,xj) = e
− 1
γ
||xi−xj ||2 . With this kernel in mind, a function can be considered as a weighted (by

αi) composition of bumps (the kernels) centered at the Q locations xi:

f(·) =

Q∑
i=1

αiK(xi, ·),

6 Loss Minimization

Again, let us consider our cost function defined over all functions f in our RKHS, as before our
loss is:

L(f) =
∑
i

(yi − f(xi))
2 + λ||f ||2

4

The purpose of 〈f, f〉 is to penalize the complexity of the solution f . Here it acts like the log of
a gaussian prior over functions. Intuitively, the probability can be thought of as being distributed
according to P (f) = 1

Z e
− 1

2
〈f,f〉 (in practice this expression doesn’t work because Z becomes infinite).

We want to find the best function f in our RKHS so as to minimize this cost, and we will do this
by moving in the direction of the negative gradient: f − α∇L. To do this, we will first have to be
able to express the gradient of a function of functions (ie. a functional such as L[f]).

6.1 Functional gradient of the regularized least squares loss function

• Let’s look at the functional gradient of the second term of the loss function:

∇E[f] = ∇||f ||2 (3)

Expanding it out using a Taylor’s series type expansion

E[f + εg] = 〈f + εg, f + εg〉
= ||f ||+ 2〈f, εg〉+ ε2||g||
= ||f ||+ ε〈2f, g〉+O(ε2)

We observe that
∇E[f] = ∇||f ||2 = 2f (4)

• Now for the first term of the loss function

E[f] =
∑
i

(yi − f(xi))
2 (5)

Using the chain rule we have

∇E[f] = −2(yi − f(xi))∇(f(xi)) (6)

We observe that ∇(f(xi)) is the functional gradient of the evaluation functional. Substituting
in the gradient of the evaluaton functional as computed in the previous section we have :

∇E[f] = −2(yi − f(xi))K(xi, ·) (7)

7 Functional gradient descent

• Regularized least squares loss function L[f]

L[f] = (yi − f(xi))
2 + λ||f ||2

L[f] = (yi − Exi [f])2 + λ||f ||2

∇L[f] = −2(yi − f(xi))K(xi, ·) + 2λf

Update rule for the regularized least squares loss function:

ft+1 ← ft − ηt∇L
← ft − ηt(−2(yt − ft(xt))K(xt, ·) + 2λft)

← ft(1− 2ηtλ) + 2ηt(yt − ft(xt))K(xt, ·)

5

where ηt is the learning rate at time step t.

The update rule is equivalent to:

– Adding a kernel K(xt, ·) weighted by 2ηt(yt − ft(xt)).

– Shrinking all other weights by (1− 2ηtλ) multiplier.

• SVM loss function L(f)

L(f(xt), yt) = max(0, 1− ytf(xt)) + λ||f ||2 (8)

The sub-gradient ∇L has two cases. One where the prediction is correct by margin = 1, and
the other where is not correct by margin = 1 (margin error).

∇L((xt), yt) =

{
0 if (1− yif(xi)) ≤ 0

L′(f(xt), yt)f
′(xt) = −ytK(xt, ·) else margin error

(9)

The update rule is equivalent to:

– Adding a kernel K(xt, ·) weighted by ηtyt in case of margin error.

– Shrinking all other weights by (1− 2ηtλ) multiplier.

What is the square loss for the linear predictor?

Lt(w) = λ||w||2 + (wtxt − yt)2 (10)

We want to control complexity- aka penalize the size of the function? What does the loss
function for SVM look like– hinge loss.

If we run this repeatedly with different L’s,

– only get kernels when we make mistakes

– once you start getting it right, weights shrink

– only end up iwth kernels at places called support vectors

8 Online Kernel Machine

• Initialize the function f = 0.

• For t = 1 to T:

1. Observe some measurement over some set of features xt

2. Predict the class using f(xt) =
∑n

i=1 αiK(xi, xt)

3. Receive loss based on the prediction from f(xt) and the true class yt

L(f(xt), yt)

4. Update f based on the gradient of the loss function L and learning rate ηt depending
on the chosen algorithm (examples in previous section).

6

8.1 Discussion

• Representer Theorem (informally): Given a loss function and regularizer objective with
many data points {xi}, the minimizing solution f∗ can be represented as

f∗(·) =
∑
i

αiK(xi, ·) (11)

• This algorithm qualitatively corresponds to adding weighted ’bumps’ that predicts some value
based on the kernel function in each new observation’s neighborhood of the feature space in
x. For example: Figure 1 shows an update over 3 points {(x1,+), (x2,−), (x3,+)}. The
individual kernels centered at the points are independently drawn with colored lines. After
3 updates, the function f looks like the solid black line.

Figure 1: Illustration of function after 3 updates

• Need to perform O(T) work at each time step. As time progresses and the data set grows,
the prediction step will take longer and longer to compute. To shorten this computation time
you may want to throw out old data points by weight or age. If interested, there are some
papers on that use tricks to find sparse solutions to large-scale problems:

– Rahimi and Recht - Random Features for Large-Scale Kernel Machines 2007

– Dekel, Shalev-Shwartz and Singer The Forgetron: A Kernel-Based Perceptron on a Bud-
get 2007

• The regret is computed as:

Regret =
∑
t

(Ct(ft(xt))− Ct(f
∗(xt))) | f∗ ∈ Hk

The regret bound:
Regret = ||∇Ct(f)||k · ||f∗||k

√
T

||f∗|| is the size of the function. ||∇Ct(f)|| can get as big as αTKα.

• The choice and tuning of the kernel and their corresponding bandwidth parameters are what
affect the bias-variance tradeoff. These are parameters that need to be tuned in addition to
the learning rate η and decay rate λ from the update equations.

– Often simple kernels work quite well. When approaching a new problem it is usually
a good idea start with linear or polynomial kernels. Radial basis functions are another
good kernel to try early on. Note that any kernels K1 and K2 that satisfy the conditions
mentioned in Section 2 can be summed to form a new valid kernel.

7

