
Statistical Techniques in Robotics (16-831, F14) Lecture#17 (Tuesday November 11)

Kalman Filter

Lecturer: Drew Bagnell Scribe: Akanksha Saran1

1 Gauss Markov Model

Last time we looked at Baye’s linear regression, where given an input data point the outcome is
a single output. Today we look at a special case of filtering algorithms, where the outcome is a
vector of outputs.

Consider X1, X2, ....Xt, Xt+1 to be the state variables and Y1, Y2, ...Yt, Yt+1 be the sequence of
corresponding observations. As in Hidden Markov models, conditional independencies (see Figure
1) dictate that past and future states are uncorrelated given the current state, Xt at time t. For
example, if we know what X2 is, then no information about X1 can possibly help us to reason
about what X3 should be.

Figure 1: The Independence Diagram of a Gauss-Markov model

The update for state variable Xt+1 is given by:

Xt+1 = AXt + ε

where
X0 ∼ N(µ0,Σ0)

ε ∼ N(0, Q)

Xt+1|Xt ∼ N(AXt, Q)

The corresponding observation Yt+1 is given by equation:

Yt+1 = CXt+1 + δ

1Content adapted from previous scribes: Greydon Foil, Ammar Husain, Heather Justice, Kiho Kwak.
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where
Y0 ∼ N(µ0, ε0)

δ ∼ N(0, R)

Each component is defined as follow:

• At: Matrix (n × n) that describes how the state evolves from t to t-1 without controls or
noise.

• Ct: Matrix (k × n) that describes how to map the state Xt to an observation Yt, where k is
the number of observations.

• εt, δt: Random variables representing the process and measurement noise that are assumed to
be independent and normally distributed with n×n noise covariances Rt and Qt respectively.

We want to find xt|y1...t, so we need to calculate µx+t and Σxt . Because a Gaussian will try to fit
itself to all of the data, in a real situation we would first try to remove all outliers to achieve a
more stable result.

Note that this parametrization is directly related to Bayes Linear Regression if it meets the following
conditions:

• X here is equivalent to θ in BLR and Y here is equivalent to Y in BLR.

• The motion model (A) is just the identity matrix.

• Q is going to 0 as t→∞. It is nonzero if the noise might be changing as a function of time.

• C is the vector xt from BLR, different here at every timestep.

• δ ∼ N(0, σ2). 0 here represents a zero vector.

2 What can you do with Gaussians?

X and Y are jointly a Gaussian distribution. The state transition is linear and the transition
between every pair of state and observation nodes is also linear. These linear transitions preserve
everything to be Gaussian.

There are two common parametrizations for Gaussians, the moment parametrization and the nat-
ural parametrization. It is often most practical to switch back and forth between representations,
depending on which calculations are needed. The moment parametrization is more convenient for
visualization (simply draw a Gaussian centered around the mean with width determined by the
variance), calculating expected value, and computing marginals. The natural parametrization is
more convenient for multiplying Gaussians and for conditioning on known variables. While it is
often convenient to switch between the two parametrizations, it is not always efficient, as we will
discuss later.
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2.1 Moment Parametrization

Recall that the moment parametrization of a Gaussian is:

N (µ,Σ) = p(θ) =
1

z
exp

(
−1

2
(θ − µ)T Σ−1 (θ − µ)

)

Given: [
x1
x2

]
∼ N

([
µ1
µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
Marginal: computing p(x2)

µmarg
2 = µ2

Σmarg
2 = Σ22

We find both of these by the definition of moments, specifically the fact that the moments of x2
don’t change if x1 is removed.

Conditional: computing p(x1|x2)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

(x2 − µ2) is the distance x2 is from its mean. We then multiply it by its uncertainty (Σ22), and
convert that value into the frame of x1 using Σ12, adding it to our best guess for x1, µ1.

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21

Here we start with the uncertainty in x1, Σ11, and subtract out the uncertainty in x2 and between
x1 and x2, again mapping it to the frame of x1 using Σ12.

Convenience of Marginal Parametrization

• Linear operations are easy.

x ∼ N (µ,Σ)

y = Ax

y ∼ N (Aµ,AΣ)

• Marginals are easy to compute.

x1 ∼ N (µ1,Σ11)
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2.2 Natural Parametrization

Recall that the natural parametrization of a Gaussian is:

Ñ (J, P ) = p̃(θ) =
1

z
exp

(
JT θ − 1

2
θTPθ

)
where

P0 = Σ−10

J0 = P0µ0

Given: [
x1
x2

]
∼ N

([
J1
J2

]
,

[
P11 P12

P21 P22

])
Marginal: computing p(x2)

Jmarg
2 = J2 − P21P

−1
11 J1

Pmarg
2 = P22 − P21P

−1
11 P12

These are most easily calculated by deriving the marginals in moment parametrization and con-
verting to natural parametrization.

Conditional: computing p(x1|x2)

p (x1|x2) =
p (x1, x2)

p (x2)
∝ p (x1, x2)

[
J1
J2

]T [
x1
x2

]
− 1

2

[
x1
x2

]T [
P11 P12

P21 P22

] [
x1
x2

]
= JTx− 1

2

[
xT1 xT2

] [ P11x1 P12x2
P21x1 P22x2

]
x1|x2 ∼ Ñ (J1 − P12x2, P11)

I also encourage you to read page 7 of [1] for the full derivation. Also note that the moment
parametrization is often called the canonical parametrization.

Convenience of Natural Parametrization Unlike marginal parametrization, linear operations
and computing marginals are not direct with natural parametrization. But there are other advan-
tages.

• Multiplication is easy (addition of parameters).

• Conditionals are easy to compute.

J1|2 = J1 − P12x2

P1|2 = P11
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3 Lazy Gauss Markov Filter

Lets take the example of a robot in a plane.

Xt+1 =

[
pos
vel

]
t+1

=

[
I (∆t) I
0 I

]
Xt + ε

ε ∼ N
(

0,

(
γ2I 0
0 σ2I

))
The observation or GPS measurement is given as

Yt+1 =
[
I 0

] [
Xt+1

]
+ δ

δ ∼ N
(

0,

(
3I 0
0 3I

))
Now given a series of measurements we want to solve the problem of determining the robot’s pose
and velocity.

Motion Model (Prediction step):

Before the observation is taken:
Xt+1 ∼ µ−t+1 = Aµt

Proof:

Mean:

E[Xt+1] = E[AXt + ε]

= E[AXt] + E[ε]

= AE[Xt](since the mean of ε is 0)

= Aµt

Variance:

Σ−t+1 = E[Xt+1 ∗Xt+1
T ]

= E[(AXt + ε)(AXt + ε)T ]

= E[(AXt)(AXt)
T ] + V ar(ε)

= AE[(Xt)(Xt)
T ]AT +Q

= AΣtA
T +Q

Therefore the motion update becomes:

µ−t+1 = Aµt

Σ−t+1 = AΣtA
T +Q
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3.1 Observation Model (Correction step):

For the observation model the natural parametrization is more suitable as it involves multiplication
of terms. The model equation in terms of Natural Parameters J and P is given by:

P (yt+1|xt+1)P (xt+1) ∝ e(J
−T xt+1− 1

2
xT
t+1Pxt+1) ∗ e−

1
2
(yt+1−Cxt+1)TR−1(yt+1−Cxt+1)

= e−
1
2
[−2yTt+1R

−1Cxt+1+xT
t+1C

TR−1Cxt+1+yTt+1R
−1yt+1]

= e−
1
2
[−2yTt+1R

−1Cxt+1+xT
t+1C

TR−1Cxt+1]

The last term in the second line is constant with respect to xt+1, so it can be added to the the
marginalization term. Therefore the observation update is:

J+
t+1 = J−t+1 + (yTt+1R

−1C)T

P+
t+1 = P−t+1 + C−1R−1C

3.2 Performance

Lazy Gauss Markov can be expressed in two forms:

• When expressed in terms of moment parameters, µ and Σ, it acts as Kalman Filter.

• When expressed in terms of natural parameters, J and P , it acts as Information Filter.

Kalman filters, as we will see, require matrix multiplications, approximately O(n2) time, to do
a prediction step, yet require matrix inversions, approximately O(n2.8) time, to perform the ob-
servation update. Information filters are the exact opposite, requiring matrix inversions for the
prediction step and matrix multiplications for the observation update. As mentioned above, the
conversion between moment and natural parametrization requires an inversion of the covariance
matrix, so switching between the two can be costly. Depending on the ratio of motion model
updates to observation model updates one filter may be faster than the other.
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