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1 Bayesian Linear Regression

In the last lecture, we started the topic of Bayesian linear regression. The problem can be repre-
sented by the following graphical model:

Figure 1: Bayesian linear regression model. xi’s are known.

where

• xi ∈ Rn is the ith set of features in the dataset,

• yi ∈ R is the true outcome given xi,

• theta ∈ R is the parameter vector of the learned model.

The problem we are solving is to find a θ that can make the best prediction on the output y = θTx
given an input x.

1.1 Assumption

We assume that the prior distribution of θ is a normal distribution N (µ,Σ) with mean µ and
covariance matrix Σ, and the probability of θ is given by

P (θ) =
1

Z
exp{−1

2
(θ − µ)TΣ−1(θ − µ)}, (1)

where µ = EP (θ)[θ] and Σ = EP (θ)[(θ − µ)T (θ − µ)].

0Some content adapted from previous scribes: Carl Doersch
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Equation (1) is called the moment parametrization of θ since it consists of the first moment (µ)
and the second moment (Σ, also called the central moment) of the variable θ. Z is a normalization
factor with the value

√
(2π)n det(Σ), where n is the dimension of θ. To prove this, one can translate

the distribution to center it at the origin, and do change of variables so that the distribution has
the form P (θ′) = 1

Z exp{−1
2θ
′T θ′}. Then, express θ′ in polar coordinates and integrate over the

space to compute Z.

1.2 Prediction

With the Bayesian linear regression model, we would like to know the probability of an output
yt+1 given an new input xt+1 and the set of data D = {(xi, yi)}i=1,...,t. To compute the probability
P (yt+1|xt+1, D), we introduce θ into this expression and marginalize over it

P (yt+1|xt+1, D) =

∫
θ∈Θ

P (yt+1|xt+1, θ,D)P (θ|xt+1, D) (2)

Because D tells no more than what θ does, P (yt+1|xt+1, θ,D) is essentially P (yt+1|xt+1, θ). Also,
from the graphical model we know that P (θ|xi, D) is P (θ|D) since yi is known and thus θ and xi
are independent. Now, equation (2) becomes

P (yt+1|xt+1, D) =

∫
θ∈Θ

P (yt+1|xt+1, θ)P (θ|D) (3)

Computing (3) is hard with the moment parametrization of normal distributions but not with the
natural parametrization.

1.3 Natural Parametrization of Normal Distributions

The normal distribution P (x) = 1
Z exp{−1

2(x− µ)TΣ−1(x− µ)} can also be expressed as

P (x) =
1

Z
exp{JTx− 1

2
xTPx} (4)

The natural parametrization simplifies the multiplication of normal distributions as it becomes
addition of the J and P matrices of different distributions.

Transforming the moment parametrization to the natural parametrization can be done by first
expanding the exponent:

−1

2
(x− µ)TΣ−1(x− µ) = −1

2
xTΣ−1 + µTΣ−1x− 1

2
µTΣ−1µ (5)

The last term in equation (5) has nothing to do with x and can therefore be absorbed into the
normalizer. By comparing (4) and (5),

J = Σ−1µ
P = Σ−1 (6)

The matrix P is called the precision matrix, and its meaning will be explained later.
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1.4 Posterior Distribution P (θ|D)

Using Bayes rule, the posterior probability P (θ|D) can be expressed as

P (θ|D) ∝ P (y1:t|x1:t, θ)P (θ) ∝

(
t∏
i=1

P (yi|xi, θ)

)
P (θ) (7)

The yi’s and θ have a diverging relationship at θ, and since θ is unknown, it follows that the yi’s are
independent of each other; that is, P (y1:t|x1:t, θ) =

∏t
i=1 P (yi|xi, θ). We will see that this product

can be computed by a simple update rule. First, let’s look at the product of P (yi|xi, θ)P (θ).

P (yi|xi, θ)P (θ) ∝ exp{− 1

2σ2
(yi − θTx)2} exp{JT − 1

2
θTPθ}

∝ exp{− 1

2σ2
(−2yiθ

Txi + θTxix
T
i θ)} exp{JT θ − 1

2
θTPθ}

= exp{ 1

σ2
yix

T θ − 1

2σ2
θTxixi

T θ} exp{JT θ − 1

2
θTPθ}

= exp{(J +
1

σ2
yixi)

T θ − 1

2
θT (P +

1

σ2
xixi

T )θ}

= exp{J ′T θ − 1

2
θTP ′θ}

Line 1 to line 2 is true because any term that does not have θ can be absorbed into the normalizer.
Now, we can apply the generalized result to (7) and derive

P (θ|D) ∝ exp{(J +

∑
i yixi
σ2

)T θ − 1

2
θT (P +

∑
i xixi

T

σ2
)} (8)

So P (θ|D) is also a normal distribution with Jfinal = J +
∑

i yixi
σ2 and Pfinal = P + 1

σ2

∑
i xixi

T .
The mean and the covariance of this distribution can be derived with the relation provided earlier:

µfinal =

(
Σ−1 +

∑
i xixi

T

σ2

)−1 ∑
i yixi
σ2

Σfinal =

(
Σ−1 +

∑
i xixi

T

σ2

)−1

Pfinal is the precision matrix of the normal distribution, and as the number of xi increases, the
terms in this matrix become larger. Also, since Pfinal is the inverse of the covariance, the variance
gets lower as the number of samples grow. This is a characteristic of a Gaussian model that a
new data point always lowers the variance, but this downgrading of variance does not always make
sense. If you believe that there are outliers in your dataset, this model will not work for you.

1.5 Probability Distribution of the Prediction

The next step to compute (3) is to compute P (yt+1|xt+1, θ). Since the linear combination of normal
distributions is also a normal distribution, P (yt+1|xt+1, θ) should be in the form 1

Z exp{− 1
2σ2 (yt+1−

µyt+1)TΣyt+1(yt+1 − µyt+1)}, where

µyt+1 = E[yt+1] = E[θTxt+1 + ε] = E[θTxt+1] + E[ε] = E[θ]Txt+1 + 0 = µθ
Txt+1,
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and
Σyt+1 = xt+1

TΣθxt+1 + σ2.

The term xTΣθx measures how large the variance is on the direction that x is on. If x is never
observed before, then the variance of the direction of x is large. Also, the variance is not a function
of yt+1. The precision is only affected by the input not the output. This is the consequence of
having the same σ (observation error) everywhere in the space.

An interesting observation can be made from the expressions of P (θ|D) and Σyt+1 . Consider the
case in which we are doing linear regression on a set of 2D data (xi, yi) and the regression curve
must pass the origin. The variance of yi is σ. When xi is close to 0, the range of possible values
of slope is big, whereas when xi is large, we are more certain about what the slope can be. But
variance of yi is magnified when the input xi is large. (See figure 2 for illustration.)
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(a) During the training phase, θ has a larger variance
when the inputs xi are small.

(b) Larger inputs decrease the variance of θ.

(c) In testing, θ is know and thus the variance of θ is
fixed, and the variance of y rises when the magnitude
of x increases.

Figure 2
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