
Statistical Techniques in Robotics (16-831, F11) Lecture#23 (November 20, 2014)

Bandit Problems

Lecturer: Venkatraman Narayanan & Karthik Lakshmanan Scribes: Nate Otten & Hanbyul Joo1

1 Bandits and Online Learning

In Generalized Weighted Majority (GWM), we have lots of experts and pick one to minimize regret:

RT =
T∑
t=1

lt(alg)−min
i

∑
t

lt(ei)

RT
T
→ 0

where ei is the best expert in hindsight. But now let’s say that at time step T , we make a prediction
and only see the loss for the expert we picked instead of the losses for all experts.

√
lnNT

1

β
lnN + β

∑
t

lt(e∗)

We need order
√
n time/data.

1.1 Stochastic Bandit Setting

The word “bandit” refers to “one-armed bandits,” another name for slot machines. The problem
is that initially we don’t know the reward distribution of any of the bandits, and we can only try
them one at a time, so based on the outcomes so far we must choose to exploit the current bandit
or explore others. For this problem, we’ll think about rewards instead of losses and assume the
distributions doesn’t change with time (i.i.d.). At time t, our reward from bandit i is a random
variable rti .

Rt =

(
max
i

T∑
t=1

rti

)
−

T∑
t=1

rtIt

It ∈ 1, 2, . . . , N

The problem is that rti is drawn from a distribution, meaning we need to compute the expected
value, not the sum; only this is too hard to compute exactly, so we will use the pseudo regret

1Some content adapted from previous scribe: Bradford Neuman (16-899 ACRL, S10)

1



instead.

E[Rt] = E

[
max
i

∑
t

rti −
∑
t

rtIt

]

= max
i
E

[∑
t

rti

]
− E

[∑
t

rtIt

]
pseudo regret

= max
i

∑
t

E
[
rti
]
− E

[∑
t

rtIt

]

= max
i
Tµi − E

[∑
t

rtIt

]
dist mean µi, i = 1, . . . , N

= Tµ∗i − E

[∑
t

µIt

]

NT
i is the number of times arm i is pulled in T time steps.

Ē[RT ] = Tµ∗i −
N∑
i=1

E[NT
i ]µi

=
N∑
i=1

E[NT
i ]µ∗i −

N∑
i=1

E[NT
i ]µi

=
N∑
i=1

E[NT
i ](µ∗i − µi)

=

N∑
i=1

E[NT
i ]∆i

1.2 Upper Confidence Bound (UCB)

The sample mean is given by

µ̂ti =
1

N t
i

∑
ri

We can’t be greedy and need to keep track of the sample confidence. The upper confidence bound
(UCB) is given by the estimated sample mean plus the confidence.

UCB = µ̂ti +

√
α lnT

2N t
i

If the total number of arm pulls T is unknown, we can replace it with t. Some combination of high
mean and high uncertainty makes us want to pull the arm. In other words, we are drawn to the
bandits that are paying out large rewards and those that we know little about. We want to upper
bound the number of times we will pull arm i, so we will attempt to compute E[NT

i ]. We will do
so using the following lemma.

2



Lemma 1. If arm i is pulled, then at least one of the following must be true.

1. µ̂t−1∗
i ≤ µ∗ −

√
α lnT

2Nt−1∗
i

2. µ̂t−1
i ≥ µi −

√
α lnT
2Nt−1

i

3. N t−1
i ≤ 2α lnT

∆i2

To prove this, we only need to assume all three are false and show that it leads to a contradiction.

µ̂t−1∗
i +

√
α lnT

2N t−1∗
i

> µ∗

= µi + ∆i where ∆i = µ∗ − µi

≥ µi +

√
2α lnT

N t−1
i

> µ̂t−1
i +

√
2 lnT

2N t−1
i

Now we will bound the number of times the arm i is pulled:

E[NT
i ] = E

[
T∑
t=1

1(It = i)

]

= E

[
T∑
t=1

1(It = i,N t−1
i ≤ t0) +

T∑
t=1

1(It = i,N t−1
i > t0)

]

≤ t0 + E

[
T∑
t=t0

1(It = i,N t−1
i > t0)

]

t0 =

√
2α lnT

∆i2

P (1 ∧ 2 ∧ 3) ≤ t0 +

T∑
t=t0+1

P (It = i,N t−1
i > t0)

P (¬3) = P (1 ∧ 2) = t0 +

T∑
t=t0+1

P (1 ∧ 2) ≤ t0 +

∞∑
t=t0+1

1

Tα

P

(
µ̂t−1∗
i ≤ µ∗ −

√
α lnT

2N t−1∗
i

)
≤ exp

(
−2× (t− 1)× α lnT

2(t− 1)

)
P (x̃− x > ε) < e−2nε2 ≤ 1

Tα

3



Finally...

E[NT
i ] ≤ t0 +

α

α− 2

Ē[Ri] ≤
∑

i=∆i>0

(
2α

∆i

)
lnT +

α

α− 2

∑
∆i

≤
√
αNT lnT

No regret.

2 Exp3 (Adversarial bandit setting)

In the non-stochastic (or adversarial case) we cannot use UCB directly. EXP3 can be used in this
case. Intuitively, as shown in 1, EXP3 exploits Generalized Weighted Majority (GWM) by passing
a unbiased loss vector l̂it to the experts of GWM as follows:

l̂it =



. . .
0
0
lit
P i
t

0
0
. . .


, (1)

And, in Exp3,

E [RT ] ≤ Σ1:4>0
2α

4i
lnT +

α

α− 2

We assume N experts:

ei, i ∈ {1, N}

At time t, the algorithm is

Pick et ∝ P it =
wit

ΣjW
j
t

Receive wit+1 = wite
−εlit

,where lit is elements of the loss vector l̄t. Then,

Epit

[
l̂it

]
= P it

(
lit
P it

)
+ (1− P it ) = lit

4



And, this is still no regret. The whole algorithm is:

At time t,
Pick eit ∝ P it
Receive lt
for j=1 to N do

if j=i then

wit+1 = wite
−εl̂it

else
wit+1 = wit

end

end
Algorithm 1: Exp3

Proof Sketch

1. R ≤ Ealgo [R]

2. Use GWM to bound Ealgo [R]

Proof of 1:

R̂ = ΣT
t=1

〈
Pt, l̂t

〉
−min

i
ΣT
t=1 l̂

i
t

= ΣT
t=1 〈Pt, lt〉 −min

i
ΣT
t=1l

i
t (By Jensen’s inequailty)

EP1,...,PT

[
R̂
]

= EP1...PT

〈
Pt, l̂t

〉
−min

i
ΣT
t=1 l̂

i
t

= ΣT
t=1lt − EP1...PT

min
i

ΣT
t=1 l̂

i
t

≥ ΣT
t=1 〈Pt, lt〉 −min

i
ΣT
t=1l

i
t

Thus, E
[
R̂
]
≥ R̂

Figure 1:

5



Proof of 2:

R̂ ≤ 1

ε
logN + εΣT

t=1‖l̂t‖2

≤ 1

ε
logN +

ε

2
ΣT
t=1ΣN

t=1Pt l̂
i
t

2

E
[
R̂
]
≤ logN

ε
+
ε

2
NT

Let’s pick ε as follows:

ε =

√
2 logN

NT

Then,

logN
√
NT√

2 logN
+

1

2

√
2logN

NT
NT =

√
2TN logN

In a conclusion, Exp3 and UCB are algorithms for different settings, and UCB has better regret in
terms of number of experts, and in terms of the time horizon, Exp3 is better than UCB.

6


