
Statistical Techniques in Robotics (16-831, F14) Lecture#26 (December 4, 2014)

Multiple Prediction in Robotics

Lecturer: Drew Bagnell Scribes: Sasanka Nagavalli, Jane Sun, Xiao Xuesu, Ke Sun, Weikun Zhen

1 Introduction

So far, we have primarily considered scenarios where we make a single prediction from a set of
possible options. For example, we might want to predict the most likely label for an object given
a set of features. However, there are many situations in which it is necessary to make multiple
predictions or choose the best subset from set of possible options. For example, consider the
case of robotic grasping, which is often performed by first producing a library of grasps (e.g. by
demonstration) and searching the library for a feasible grasp based on sensing information at run
time. Another example is trajectory optimization, which is often performed by first producing a
trajectory library (e.g. set of dynamically feasible motion primitives), picking a particular seed
trajectory from the library, applying local trajectory optimization to ensure a collision-free path
and iterating with a new seed trajectory from the library if a collision cannot be avoided using
the chosen seed trajectory. In both of these scenarios, consider the following question: what are
the particular grasps or trajectories that should be stored in the library and in what order should
they be accessed? Other problems that present a similar challenge include feature selection and
summarizing documents.

(a) Set of pre-computed grasps (b) Evaluation of the grasps

2 Content and Order of Items in Library

Objective 1: Content - Predict successful actions.

Objective 2: Order - Predict sequences such that the average search depth for successful action
can be minimized. This is a “min-sum submodular set cover” problem.

1

3 Submodular Set Function

3.1 Definition

Given a set S, the power set (i.e. set of all subsets) of S is denoted 2S . Consider a set function
F : 2S → R+ that maps from the power set of S to a positive real value. This function is called
submodular if for every X ⊆ Y ⊆ S and z ∈ S \ Y , the following condition is satisfied:

F (X ∪ {z})− F (X) ≥ F (Y ∪ {z})− F (Y) (1)

Submodularity captures the idea of diminishing returns: there is more incremental benefit when
adding an item to a smaller subset.

3.2 Monotone

A submodular function F is monotone if ∀X ⊆ Y ⊆ S : F (X) ≤ F (Y). For the remainder of the
discussion, assume that when we say submodular, we also mean monotone.

3.3 Maximizing Submodular Functions - “Greed is Good”

Maximizing submodular functions is NP-hard. However, it has been shown that greedy algorithms
provide a

(
1− 1

e

)
approximation to the optimal solution. Specifically, for the problem of choosing

a subset of size k from S to maximize the submodular function F , if the optimal solution is L∗k ⊆ S
with |L∗k| = k, then it can be shown that a greedy algorithm will select Lk ⊆ S with |Lk| = k such
that the following is true.

F (Lk) ≥
(

1− 1

e

)
F (L∗k) (2)

If F (L) measures the utility of set L, then applying the greedy algorithm will ensure that the
utility of our selected set Lk will be no worse than

(
1− 1

e

)
≈ 63% of the utility of the optimal set

L∗k. But the formula only applies when we are able to evaluate utility function F.

4 Applying Submodularity in Trajectory Library Generation

Given a set of trajectories T = {T1, T2, . . .}, a set of environments E = {E1, E2, . . .} and some data
showing in which environments ETi ⊆ E each trajectory Ti succeeds, we want to form a library
L ⊆ T of k trajectories (i.e. |L| = k) with the maximum utility. The utility of our library F (L) is
the number of environments which can be successfully handled by the trajectories in the library.

F (L) =

∣∣∣∣∣∣
⋃
Ti∈L
ETi

∣∣∣∣∣∣ (3)

The utility function F is submodular, so we can use a greedy algorithm to add each trajectory to
our library. Beginning with an empty library (L = ∅), the greedy algorithm proceeds as follows.

2

(a) A table showing the perfor-
mances of five grasps

(b) Our first best choice is S =
{G4}

(c) The subsequent choices will
be chosen according how well
it performs and how little over-
lapping it has with previous best
choice, S = {G4, G2, G1, G5,
G3}

Figure 2: Greedy Training Example

1. Find the trajectory T ∗ ∈ T which results in the maximum utility when added to the current
library: T ∗ ← arg maxTi∈T F (L ∪ {Ti})

2. Add T ∗ to the library: L ← L ∪ {T ∗}

3. If the library size has not reached the budget (i.e. |L| < k), then repeat from (1). Otherwise,
we are done.

Since F is submodular, the generated library L will succeed in at least
(
1− 1

e

)
≈ 63% as many

environments as the optimal trajectory library L∗, but not necessarily the same subset of environ-
ments.

5 Challenges in a Contextual Learning Setting

In a contextual learning setting, the utility function F can only be evaluated on training data.
However, we want to learn a predictor that genalizes and generates a list with high utility for new
test problems. For example, from a set of known successful seeds in training environments, we want
to generate a set of currently unknown successful seeds for test environments.

In traditional machine learning, we provide a single best guess. How do we extend this notion to
lists?

1. “Model-based” Approach

(a) Learn a submodular function F (S;x) parameterized by features x.

(b) Approximately optimize it (e.g. using the greedy algorithm).

(c) Use linear combinations of submodular functions, which are also guaranteed to be sub-
modular.

2. “Model-free” Approach

3

(a) Learn to predict actions to compete / mimic greedy algorithm.

(b) Approach is a reduction. Reduce the problem of list prediction to a set of simple classi-
fication problems.

(c) ConSeqOpt

5.1 Contextual Sequence Optimization

Transform sequence prediction into sequence of classification or regression problems using reduc-
tion, meaning doing well on the classification or regression implies doing well on the prediction.
The method accounts for features of the environment and it is within constant factor of the (in-
tractable) problem of predicting from the powerset of sequences of classifiers. Refer to Theorem
3 in Contextual Sequence Prediction via Submodular Function Optimization, Dey, Liu, Hebert,
Bagnell, RSS 2012.

5.2 Submodular Contextual Policy

Submodular Contextual Policy (SCP) trains single policy to mimic greedy on training data. It
generalizes across positions which leads it to learns more efficiently. It requires learning iteratively.
See the lecture slides below for illustration.

Figure 3: SCP for list optimization.

4

Figure 4: The SCP algorithm.

5

