
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Hierarchy

18-213/18-613: Introduction to Computer Systems
9th Lecture, February 12, 2024

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction CSAPP 6.1.1
 RAM : main memory building block CSAPP 6.1.1
 Storage technologies and trends CSAPP 6.1.2-6.1.4
 The memory hierarchy CSAPP 6.3
 Working sets CSAPP 6.2
 Locality of reference CSAPP 6.2
 Caches CSAPP 6.4-6.5

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today’s Goal

 Make the system perform almost as if all of the memory
is the fastest type of memory, while the average cost per
byte is as if all of the memory is the cheapest kind of
memory.

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing & Reading Memory

 Write
▪ Transfer data from CPU to memory
movq %rax, 8(%rsp)

▪ “Store” operation

 Read
▪ Transfer data from memory to CPU
movq 8(%rsp), %rax

▪ “Load” operation

From 4th lecture

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional Bus Structure Connecting
CPU and Memory

 A bus is a collection of parallel wires that carry address,
data, and control signals.

 Buses are typically shared by multiple devices.

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (1)

 CPU places address A on the memory bus.

ALU

Register file

Bus interface

A
0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

CPU chip

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main
memory

%rax

I/O bridge

Load operation: movq A, %rax

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (3)

 CPU read word x from the bus and copies it into register
%rax.

ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

x

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (2)

 CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores
it at address A.

y
ALU

Register file

Bus interface y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction CSAPP 6.1.1
 RAM : main memory building block CSAPP 6.1.1
 Storage technologies and trends CSAPP 6.1.2-6.1.4
 The memory hierarchy CSAPP 6.3
 Working sets CSAPP 6.2
 Locality of reference CSAPP 6.2
 Caches CSAPP 6.4-6.5

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Random-Access Memory (RAM)

 Key features
▪ RAM is traditionally packaged as a chip.

▪ or embedded as part of processor chip

▪ Basic storage unit is normally a cell (one bit per cell).

▪ Multiple RAM chips form a memory.

 RAM comes in two varieties:
▪ SRAM (Static RAM)

▪ DRAM (Dynamic RAM)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RAM Technologies

 DRAM

 1 Transistor + 1
capacitor / bit

▪ Capacitor oriented
vertically

 Must refresh state
periodically

 SRAM

 6 transistors / bit

 Holds state indefinitely
(but will still lose data
on power loss)

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SRAM vs DRAM Summary

 Trends
▪ SRAM scales with semiconductor technology

▪ Reaching its limits

▪ DRAM scaling limited by need for minimum capacitance

▪ Aspect ratio limits how deep can make capacitor

▪ Also reaching its limits

Trans. Access Needs Needs
 per bit time refresh? EDC? Cost Applications

SRAM 6 or 8 1x No Maybe 100x Cache memories

DRAM 1 10x Yes Yes 1x Main memories,
 frame buffers

EDC: Error detection and correction

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enhanced DRAMs

 Operation of DRAM cell has not changed since its invention
▪ Commercialized by Intel in 1970.

 DRAM cores with better interface logic and faster I/O :
▪ Synchronous DRAM (SDRAM)

▪ Uses a conventional clock signal instead of asynchronous control

▪ Double data-rate synchronous DRAM (DDR SDRAM)

▪ Double edge clocking sends two bits per cycle per pin

▪ Different types distinguished by size of small prefetch buffer:

– DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits), DDR4 (16 bits)

▪ By 2010, standard for most server and desktop systems

▪ Intel Core i7 supports DDR3 and DDR4 SDRAM

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conventional DRAM Organization

 d x w DRAM:
▪ d⋅ w total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip (toy example)

addr

data

supercell

(2,1)

2 bits

/

8 bits

/

Memory

controller
(to/from CPU)

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2

/

8

/

Memory

controller

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually
back to the CPU.

Step 3: All data written back to row to provide refresh

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2

/

8

/

Memory

controller

supercell

(2,1)

supercell

(2,1)

To CPU

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Modules

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory

controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits

0-7

bits

8-15

bits

16-23

bits

24-31

bits

32-39

bits

40-47

bits

48-55

bits

56-63

64-bit word

031 78151623243263 394047485556

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction CSAPP 6.1.1
 RAM : main memory building block CSAPP 6.1.1
 Storage technologies and trends CSAPP 6.1.2-6.1.4
 The memory hierarchy CSAPP 6.3
 Working sets CSAPP 6.2
 Locality of reference CSAPP 6.2
 Caches CSAPP 6.4-6.5

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Storage Technologies

 Magnetic Disks

 Store on magnetic
medium

 Electromechanical
access

 Nonvolatile (Flash)
Memory

 Store as persistent
charge

 Implemented with 3-D
structure

▪ 100+ levels of cells

▪ 3 bits data per cell

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a
processor
and memory!)SCSI

connector

Image courtesy of Seagate Technology

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Geometry

 Disks consist of platters, each with two surfaces.

 Each surface consists of concentric rings called tracks.

 Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Capacity

 Capacity: maximum number of bits that can be stored.
▪ Vendors express capacity in units of gigabytes (GB) or terabytes (TB),

where 1 GB = 109 Bytes and 1 TB = 1012 Bytes

 Capacity is determined by these technology factors:
▪ Recording density (bits/in): number of bits that can be squeezed into

a 1 inch segment of a track.

▪ Track density (tracks/in): number of tracks that can be squeezed into
a 1 inch radial segment.

▪ Areal density (bits/in2): product of
recording and track density.

Tracks

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

By moving radially, the arm can
position the read/write head
over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

sp
in

d
le

spindle

sp
in

d
le

spindlespindle

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation (Multi-Platter View)

Arm

Read/write heads
move in unison
from cylinder to
cylinder

Spindle

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational
latency

Data transfer

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time

 Average time to access some target sector approximated by:
▪ Taccess = Tavg seek + Tavg rotation + Tavg transfer

 Seek time (Tavg seek)
▪ Time to position heads over cylinder containing target sector.

▪ Typical Tavg seek is 3—9 ms

 Rotational latency (Tavg rotation)
▪ Time waiting for first bit of target sector to pass under r/w head.

▪ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

▪ Typical rotational rate = 7,200 RPMs

 Transfer time (Tavg transfer)
▪ Time to read the bits in the target sector.

▪ Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time Example

 Given:
▪ Rotational rate = 7,200 RPM

▪ Average seek time = 9 ms

▪ Avg # sectors/track = 400

 Derived:
▪ Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms

▪ Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms

▪ Taccess = 9 ms + 4 ms + 0.02 ms

 Important points:
▪ Access time dominated by seek time and rotational latency.

▪ First bit in a sector is the most expensive, the rest are free.

▪ SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

▪ Disk is about 40,000 times slower than SRAM,

▪ 2,500 times slower than DRAM.

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Bus

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus Expansion slots for
other devices such
as network adapters.

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk controller.

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector and
performs a direct memory access
(DMA) transfer into main memory.

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes,
the disk controller notifies the CPU
with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU).

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonvolatile Memories

 DRAM and SRAM are volatile memories
▪ Lose information if powered off.

 Nonvolatile memories retain value even if powered off
▪ Read-only memory (ROM): programmed during production

▪ Electrically eraseable PROM (EEPROM): electronic erase capability

▪ Flash memory: EEPROMs, with partial (block-level) erase capability

▪ Wears out after about 100,000 erasings

▪ 3D XPoint (Intel Optane) & emerging NVMs

▪ New materials

 Uses for Nonvolatile Memories
▪ Firmware programs stored in a ROM (BIOS, controllers for disks,

network cards, graphics accelerators, security subsystems,…)

▪ Solid state disks (replacing rotating disks)

▪ Disk caches

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solid State Disks (SSDs)

 Pages: 512B to 4KB, Blocks: 32 to 128 pages

 Data read/written in units of pages.

 Page can be written only after its block has been erased.

 A block wears out after about 100,000 repeated writes.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

DRAM
Buffer

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SSD Performance Characteristics
 Benchmark of Samsung 940 EVO Plus

 Sequential access faster than random access
▪ Common theme in the memory hierarchy

 Random writes are somewhat slower
▪ Erasing a block takes a long time (~1 ms).

▪ Modifying a block page requires all other pages to be copied to
new block.

▪ Flash translation layer allows accumulating series of small writes
before doing block write.

Sequential read throughput 2,126 MB/s Sequential write tput 1,880 MB/s
Random read throughput 140 MB/s Random write tput 59 MB/s

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SSD Tradeoffs vs Rotating Disks

 Advantages
▪ No moving parts → faster, less power, more rugged

 Disadvantages
▪ Have the potential to wear out

▪ Mitigated by “wear leveling logic” in flash translation layer

▪ E.g. Samsung 940 EVO Plus guarantees 600 writes/byte of
writes before they wear out

▪ Controller migrates data to minimize wear level

▪ In 2022, about 2 times more expensive per byte

▪ 1TB SSD is 8¢/GB. 1TB HDD is 4¢/GB. 12TB HDD is 3¢/GB

 Applications
▪ Smartphones, laptops

▪ Increasingly common in desktops and servers

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction CSAPP 6.1.1
 RAM : main memory building block CSAPP 6.1.1
 Storage technologies and trends CSAPP 6.1.2-6.1.4
 The memory hierarchy CSAPP 6.3
 Working sets CSAPP 6.2
 Locality of reference CSAPP 6.2
 Caches CSAPP 6.4-6.5

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Hierarchies

 Some fundamental and enduring properties of hardware
and software:
▪ Fast storage technologies cost more per byte, have less capacity,

and require more power (heat!).

▪ The gap between CPU and main memory speed is widening.

▪ Well-written programs tend to exhibit good locality.

 These fundamental properties complement each other
beautifully.

 They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

Effective CPU cycle time:
accounts for parallelism
within CPU (e.g., multiple
cores per CPU)

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction CSAPP 6.1.1
 RAM : main memory building block CSAPP 6.1.1
 Storage technologies and trends CSAPP 6.1.2-6.1.4
 The memory hierarchy CSAPP 6.3
 Working sets CSAPP 6.2
 Locality of reference CSAPP 6.2
 Caches CSAPP 6.4-6.5

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Working Sets

 Think about working on the bomb lab. Maybe you have the
write-up open in one window, the debugger open in another
window, and an assembly reference in yet another window.

 Think about eating a meal. You need room on the table for
your fork, your knife, your plate, your napkin, and your glass.

 The set of resources actively needed for a task are called the
working set for the task.

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Working Sets
 If we can keep the working set for the active task in the fastest

memory, the task will perform at the speed of the fastest
memory.

 This is true even if the working sets for inactive tasks that we
are in slower memory.

 If we don’t have the enough fast memory to hold the whole
working set of the active task, we end up repeatedly paying the
price to swap what we’ll need soon for we’ll need right now.

 The cost of the initial, likely incremental, movement of the
working set from slower memory to faster memory may be
expensive, but it is often amortized to something negligible
over the lifetime of the task.

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Determining the Working Set
 If the system can determine the working set, and it has

enough fast memory, it can arrange to bring it into the
fast memory or keep it there once it gets there.
▪ Sort of like setting the table

▪ Or leaving everything set up on the workbench at night to be ready
for morning.

 But, the processors doesn’t understand the task. It can’t
see (much of) the future. It just does what it is told. It
can’t know the working set.
▪ And the task, and therefore the associated working set, can change

at any time.

 But it can use heuristics to estimate or approximate it.
▪ Let’s talk about Locality: Spatial locality and Temporal locality.

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction CSAPP 6.1.1
 RAM : main memory building block CSAPP 6.1.1
 Storage technologies and trends CSAPP 6.1.2-6.1.4
 The memory hierarchy CSAPP 6.3
 Working sets CSAPP 6.2
 Locality of reference CSAPP 6.2
 Caches CSAPP 6.4-6.5

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality:
A Heuristic for Approximating the Working Set

 Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

 Temporal locality:
▪ Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:
▪ Items with nearby addresses tend

to be referenced close together in time

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example

 Data references
▪ Reference array elements in succession

(stride-1 reference pattern).

▪ Reference variable sum each iteration.

 Instruction references
▪ Reference instructions in sequence.

▪ Cycle through loop repeatedly.

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Spatial or Temporal
Locality?

temporal

spatial

temporal

spatial

Temporal

Spatial

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Qualitative Estimates of Locality
 Claim: Being able to look at code and get a qualitative sense

of its locality is a key skill for a professional programmer.

 Question: Does this function have good locality with respect
to array a?

int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 sum += a[i][j];

 return sum;

}

Answer: yes
Stride-1 reference

pattern

Hint: array layout
 is row-major order

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example

 Question: Does this function have good locality with
respect to array a?

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

Answer: no

Stride N reference
pattern

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

Note: If M is very small
then good locality. Why?

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example

 Question: Can you permute the loops so that the function
scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])

{

 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < M; k++)

 sum += a[k][i][j];

 return sum;

}

Answer: make j the inner loop

$ time ./loopijk

real 0m2.765s

user 0m2.328s

sys 0m0.422s

$ time ./loopkij

real 0m1.651s

user 0m1.234s

sys 0m0.422s

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Makes Locality A Good Heuristic?

 Remember that we care about spatial and temporal locality
because they allow us to estimate the working set.

 But, what makes them a particularly good way of doing
that?

 They are simple enough to implement efficiently in
hardware without slowing things down too much
▪ Temporal locality can be managed by keeping the most recently

used objects and letting go of the least recently used objects.

▪ Spatial locality is natural to model by maintaining blocks of nearby
objects vs individual objects

▪ They can be learned quickly enough to be of value in the future

▪ They don’t require prior knowledge or understanding of the task.

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Is Locality Always a Good Heursitic?
 Spatial and temporal locality are heuristics. They are not

necessarily applicable to all workloads.

 As one example, consider streaming data to preprocess it
enroute to an AI algorithm or other application.
▪ Spatial locality still applies: If we access one piece of data, we’re

likely to access the next piece of data next.

▪ But, temporal locality no longer applies: Once we’ve seen it and
processed it, we won’t look back

▪ The working set is a dynamically moving window.

 In this situation, we might want to a heuristic that suggests,
“After N sequential accesses, beginning prefetching ahead
of the current accesses to overlap I/O and processing.”
▪ Future attraction: We see this in the OS paging system, for example.

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 The memory abstraction CSAPP 6.1.1
 RAM : main memory building block CSAPP 6.1.1
 Storage technologies and trends CSAPP 6.1.2-6.1.4
 The memory hierarchy CSAPP 6.3
 Working sets CSAPP 6.2
 Locality of reference CSAPP 6.2
 Caches CSAPP 6.4-6.5

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Caches

 Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

 Fundamental idea of a memory hierarchy:
▪ For each k, the faster, smaller device at level k serves as a cache for the

larger, slower device at level k+1.

 Why do memory hierarchies work?
▪ Because of locality, programs tend to access the data at level k more

often than they access the data at level k+1.

▪ Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

 Big Idea (Ideal): The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Impact of spatial locality
on number of misses?

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Caching Concepts:
3 Types of Cache Misses

 Compulsory miss
▪ Compulsory misses occur because the cache starts empty and this is the

first reference to the block.

 Capacity miss
▪ Occurs when the set of active cache blocks (working set) is larger than

the cache.

 Conflict miss
▪ Most caches limit blocks at level k+1 to a small subset (sometimes a

singleton) of the block positions at level k.

▪ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

▪ Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

▪ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examples of Caching in the Mem. Hierarchy

Hardware
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
 The speed gap between CPU, memory and mass storage

continues to widen and the average cost of a storage
approximate our cheapest memory

 Careful movement of data can allow us to have the
average access approximate our fastest memory
▪ An understanding of the behavior of our work, including its

working set, locality, etc, can enable us to facilitate this movement.

 Memory hierarchies based on caching close the gap by
exploiting locality.

 Flash memory progress outpacing all other memory and
storage technologies (DRAM, SRAM, magnetic disk)
▪ Able to stack cells in three dimensions

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Supplemental slides

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 880 100 30 1 0.1 0.06 0.02 44,000

access (ns) 200 100 70 60 50 40 20 10

typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage Trends

DRAM

SRAM

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333

access (ms) 75 28 10 8 5 3 3 25

typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 2,900 320 256 100 75 60 320 116

access (ns) 150 35 15 3 2 1.5 200 115

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CPU Clock Rates

1985 1990 1995 2003 2005 2010 2015 2015:1985

CPU 80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h)

Clock

rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500

Cycle

time (ns) 166 50 6 0.30 0.50 0.4 0.33 500

Cores 1 1 1 1 2 4 4 4

Effective

cycle 166 50 6 0.30 0.25 0.10 0.08 2,075

time (ns)

Inflection point in computer history
when designers hit the “Power Wall”

(n) Nehalem processor
(h) Haswell processor

	Slide 1
	Slide 2: The Memory Hierarchy 18-213/18-613: Introduction to Computer Systems 9th Lecture, February 12, 2024
	Slide 3: Today
	Slide 4: Today’s Goal
	Slide 5: Writing & Reading Memory
	Slide 6: Traditional Bus Structure Connecting CPU and Memory
	Slide 7: Memory Read Transaction (1)
	Slide 8: Memory Read Transaction (2)
	Slide 9: Memory Read Transaction (3)
	Slide 10: Memory Write Transaction (1)
	Slide 11: Memory Write Transaction (2)
	Slide 12: Memory Write Transaction (3)
	Slide 13: Today
	Slide 14: Random-Access Memory (RAM)
	Slide 15: RAM Technologies
	Slide 16: SRAM vs DRAM Summary
	Slide 17: Enhanced DRAMs
	Slide 18: Conventional DRAM Organization
	Slide 19: Reading DRAM Supercell (2,1)
	Slide 20: Reading DRAM Supercell (2,1)
	Slide 21: Memory Modules
	Slide 22: Today
	Slide 23: Storage Technologies
	Slide 24: What’s Inside A Disk Drive?
	Slide 25: Disk Geometry
	Slide 26: Disk Capacity
	Slide 27: Disk Operation (Single-Platter View)
	Slide 28: Disk Operation (Multi-Platter View)
	Slide 29: Disk Access – Service Time Components
	Slide 30: Disk Access Time
	Slide 31: Disk Access Time Example
	Slide 32: I/O Bus
	Slide 33: Reading a Disk Sector (1)
	Slide 34: Reading a Disk Sector (2)
	Slide 35: Reading a Disk Sector (3)
	Slide 36: Nonvolatile Memories
	Slide 37: Solid State Disks (SSDs)
	Slide 38: SSD Performance Characteristics
	Slide 39: SSD Tradeoffs vs Rotating Disks
	Slide 40: Today
	Slide 41: Memory Hierarchies
	Slide 42: Example Memory Hierarchy
	Slide 43: The CPU-Memory Gap
	Slide 44: Today
	Slide 45: Working Sets
	Slide 46: Working Sets
	Slide 47: Determining the Working Set
	Slide 48: Today
	Slide 49: Locality: A Heuristic for Approximating the Working Set
	Slide 50: Locality Example
	Slide 51: Qualitative Estimates of Locality
	Slide 52: Locality Example
	Slide 53: Locality Example
	Slide 54: What Makes Locality A Good Heuristic?
	Slide 55: Is Locality Always a Good Heursitic?
	Slide 56: Today
	Slide 57: Caches
	Slide 58: General Cache Concepts
	Slide 59: General Cache Concepts: Hit
	Slide 60: General Cache Concepts: Miss
	Slide 61: General Caching Concepts: 3 Types of Cache Misses
	Slide 62: Examples of Caching in the Mem. Hierarchy
	Slide 63: Summary
	Slide 64: Supplemental slides
	Slide 65: Storage Trends
	Slide 66: CPU Clock Rates

