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Today’s Goal

 Make the system perform almost as if all of the memory 
is the fastest type of memory, while the average cost per 
byte is as if all of the memory is the cheapest kind of 
memory. 
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Writing & Reading Memory

 Write
▪ Transfer data from CPU to memory 
movq %rax, 8(%rsp)

▪ “Store” operation

 Read
▪ Transfer data from memory to CPU
movq 8(%rsp), %rax

▪ “Load” operation

From 4th lecture
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Traditional Bus Structure Connecting 
CPU and Memory

 A bus is a collection of parallel wires that carry address, 
data, and control signals.

 Buses are typically shared by multiple devices.

Main
memory

I/O 
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus
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Memory Read Transaction (1)

 CPU places address A on the memory bus.

ALU

Register file

Bus interface

A
0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

CPU chip
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Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves 
word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main 
memory

%rax

I/O bridge

Load operation: movq A, %rax
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Memory Read Transaction (3)

 CPU read word x from the bus and copies it into register 
%rax.

ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

x



Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and 
waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Memory Write Transaction (2)

  CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores 
it at address A.

y
ALU

Register file

Bus interface y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A
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Random-Access Memory (RAM)

 Key features
▪ RAM is traditionally packaged as a chip.

▪ or embedded as part of processor chip

▪ Basic storage unit is normally a cell (one bit per cell).

▪ Multiple RAM chips form a memory.

 RAM comes in two varieties:
▪ SRAM (Static RAM)

▪ DRAM (Dynamic RAM)
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RAM Technologies

 DRAM

 1 Transistor + 1 
capacitor / bit

▪ Capacitor oriented 
vertically

 Must refresh state 
periodically

 SRAM

 6 transistors / bit

 Holds state indefinitely 
(but will still lose data 
on power loss)



Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SRAM vs DRAM Summary

 Trends
▪ SRAM scales with semiconductor technology

▪ Reaching its limits

▪ DRAM scaling limited by need for minimum capacitance

▪ Aspect ratio limits how deep can make capacitor

▪ Also reaching its limits

Trans. Access Needs Needs  
 per bit  time refresh? EDC? Cost Applications

SRAM 6 or 8 1x No Maybe 100x Cache memories

DRAM 1 10x Yes Yes 1x Main memories,
      frame buffers

EDC: Error detection and correction
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Enhanced DRAMs

 Operation of DRAM cell has not changed since its invention
▪ Commercialized by Intel in 1970. 

 DRAM cores with better interface logic and faster I/O :
▪ Synchronous DRAM (SDRAM)

▪ Uses a conventional clock signal instead of asynchronous control

▪ Double data-rate synchronous DRAM (DDR SDRAM)

▪ Double edge clocking sends two bits per cycle per pin

▪ Different types distinguished by size of small prefetch buffer:

– DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits), DDR4 (16 bits)

▪ By 2010, standard for most server and desktop systems

▪ Intel Core i7 supports DDR3 and DDR4 SDRAM
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Conventional DRAM Organization

 d x w DRAM:
▪ d⋅ w total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip (toy example)

addr

data

supercell

(2,1)

2 bits

/

8 bits

/

Memory

controller
(to/from CPU)
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2

/

8

/

Memory

controller
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually 
back to the CPU.

Step 3: All data written back to row to provide refresh

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2

/

8

/

Memory

controller

supercell 

(2,1)

supercell 

(2,1)

To CPU
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Memory Modules

: supercell (i,j)

64 MB  
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory

controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits

0-7

bits

8-15

bits

16-23

bits

24-31

bits

32-39

bits

40-47

bits

48-55

bits

56-63

64-bit word

031 78151623243263 394047485556
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Storage Technologies

 Magnetic Disks

 Store on magnetic 
medium

 Electromechanical 
access

 Nonvolatile (Flash) 
Memory

 Store as persistent 
charge

 Implemented with 3-D 
structure

▪ 100+ levels of cells

▪ 3 bits data per cell
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What’s Inside A Disk Drive?
SpindleArm

Actuator

Platters

Electronics
(including a 
processor 
and memory!)SCSI

connector

Image courtesy of Seagate Technology
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Disk Geometry

 Disks consist of platters, each with two surfaces.

 Each surface consists of concentric rings called tracks.

 Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps
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Disk Capacity

 Capacity: maximum number of bits that can be stored.
▪ Vendors express capacity in units of gigabytes (GB) or terabytes (TB),  

where 1 GB = 109 Bytes and 1 TB = 1012 Bytes 

 Capacity is determined by these technology factors:
▪ Recording density (bits/in): number of bits that can be squeezed into 

a 1 inch segment of a track.

▪ Track density (tracks/in): number of tracks that can be squeezed into 
a 1 inch radial segment.

▪ Areal density (bits/in2): product of 
recording and track density.

Tracks



Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation (Single-Platter View)

The disk surface 
spins at a fixed
rotational rate

By moving radially, the arm can 
position the read/write head 
over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

sp
in

d
le

spindle

sp
in

d
le

spindlespindle
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Disk Operation (Multi-Platter View)

Arm

Read/write heads 
move in unison
from cylinder to 
cylinder

Spindle
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Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational 
latency

Data transfer
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Disk Access Time

 Average time to access some target sector approximated by:
▪ Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer 

 Seek time (Tavg seek)
▪ Time to position heads over cylinder containing target sector.

▪ Typical  Tavg seek is 3—9 ms

 Rotational latency (Tavg rotation)
▪ Time waiting for first bit of target sector to pass under r/w head.

▪ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

▪ Typical rotational rate = 7,200 RPMs

 Transfer time (Tavg transfer) 
▪ Time to read the bits in the target sector.

▪ Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read
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Disk Access Time Example

 Given:
▪ Rotational rate = 7,200 RPM

▪ Average seek time = 9 ms

▪ Avg # sectors/track = 400

 Derived:
▪ Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms

▪ Tavg transfer = 60/7200 x 1/400 x 1000 ms/sec = 0.02 ms

▪ Taccess  = 9 ms + 4 ms + 0.02 ms

 Important points:
▪ Access time dominated by seek time and rotational latency.

▪ First bit in a sector is the most expensive, the rest are free.

▪ SRAM access time is about  4 ns/doubleword, DRAM about  60 ns

▪ Disk is about 40,000 times slower than SRAM, 

▪ 2,500 times slower than DRAM.
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I/O Bus

Main
memory

I/O 
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus Expansion slots for
other devices such
as network adapters.
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Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a 
command, logical block number, and 
destination memory address to a port 
(address) associated with disk controller.
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Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector and 
performs a direct memory access 
(DMA) transfer into main memory.
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Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes, 
the disk controller notifies the CPU 
with an interrupt (i.e., asserts a 
special “interrupt” pin on the CPU).
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Nonvolatile Memories

 DRAM and SRAM are volatile memories
▪ Lose information if powered off.

 Nonvolatile memories retain value even if powered off
▪ Read-only memory (ROM): programmed during production

▪ Electrically eraseable PROM (EEPROM): electronic erase capability

▪ Flash memory: EEPROMs, with partial (block-level) erase capability

▪ Wears out after about 100,000 erasings

▪ 3D XPoint (Intel Optane) & emerging NVMs

▪ New materials

 Uses for Nonvolatile Memories
▪ Firmware programs stored in a ROM (BIOS, controllers for disks, 

network cards, graphics accelerators, security subsystems,…)

▪ Solid state disks (replacing rotating disks)

▪ Disk caches



Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solid State Disks (SSDs)

 Pages: 512B to 4KB, Blocks: 32 to 128 pages

 Data read/written in units of pages. 

 Page can be written only after its block has been erased.

 A block wears out after about 100,000 repeated writes.

Flash 
translation layer

I/O bus

Page 0 Page 1 Page P-1…
Block 0

… Page 0 Page 1 Page P-1…
Block  B-1

Flash memory

Solid State Disk (SSD)

Requests to read and 
write logical disk blocks

DRAM
Buffer
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SSD Performance Characteristics 
 Benchmark of Samsung 940 EVO Plus

 Sequential access faster than random access
▪ Common theme in the memory hierarchy

 Random writes are somewhat slower
▪ Erasing a block takes a long time (~1 ms).

▪ Modifying a block page requires all other pages to be copied to 
new block.

▪ Flash translation layer allows accumulating series of small writes 
before doing block write.

Sequential read throughput   2,126 MB/s  Sequential write tput 1,880 MB/s
Random read throughput          140 MB/s  Random write tput       59 MB/s

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB

https://ssd.userbenchmark.com/SpeedTest/711305/Samsung-SSD-970-EVO-Plus-250GB
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SSD Tradeoffs vs Rotating Disks

 Advantages 
▪ No moving parts → faster, less power, more rugged

 Disadvantages
▪ Have the potential to wear out 

▪ Mitigated by “wear leveling logic” in flash translation layer

▪ E.g. Samsung 940 EVO Plus guarantees 600 writes/byte of 
writes before they wear out

▪ Controller migrates data to minimize wear level

▪ In 2022, about 2 times more expensive per byte

▪ 1TB SSD is 8¢/GB. 1TB HDD is 4¢/GB. 12TB HDD is 3¢/GB

 Applications
▪ Smartphones, laptops

▪ Increasingly common in desktops and servers
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Memory Hierarchies

 Some fundamental and enduring properties of hardware 
and software:
▪ Fast storage technologies cost more per byte, have less capacity, 

and require more power (heat!). 

▪ The gap between CPU and main memory speed is widening.

▪ Well-written programs tend to exhibit good locality.

 These fundamental properties complement each other 
beautifully.

 They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy.
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Example Memory 
     Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers.

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved 
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk blocks 
retrieved from local disks.
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The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds. 

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

Effective CPU cycle time: 
accounts for parallelism 
within CPU (e.g., multiple 
cores per CPU)
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Working Sets 

 Think about working on the bomb lab. Maybe you have the 
write-up open in one window, the debugger open in another 
window, and an assembly reference in yet another window. 

 Think about eating a meal. You need room on the table for 
your fork, your knife, your plate, your napkin, and your glass. 

 The set of resources actively needed for a task are called the 
working set for the task.
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Working Sets 
 If we can keep the working set for the active task in the fastest 

memory, the task will perform at the speed of the fastest 
memory.

 This is true even if the working sets for inactive tasks that we 
are in slower memory.

 If we don’t have the enough fast memory to hold the whole 
working set of the active task, we end up repeatedly paying the 
price to swap what we’ll need soon for we’ll need right now. 

 The cost of the initial, likely incremental, movement of the 
working set from slower memory to faster memory may be 
expensive, but it is often amortized to something negligible 
over the lifetime of the task.  
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Determining the Working Set
 If the system can determine the working set, and it has 

enough fast memory, it can arrange to bring it into the 
fast memory or keep it there once it gets there. 
▪ Sort of like setting the table

▪ Or leaving everything set up on the workbench at night to be ready 
for morning. 

 But, the processors doesn’t understand the task. It can’t 
see (much of) the future. It just does what it is told. It 
can’t know the working set.
▪ And the task, and therefore the associated working set, can change 

at any time. 

 But it can use heuristics to estimate or approximate it. 
▪ Let’s talk about Locality: Spatial locality and Temporal locality. 
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Locality: 
A Heuristic for Approximating the Working Set

 Principle of Locality: Programs tend to use data and 
instructions with addresses near or equal to those they 
have used recently

 Temporal locality:  
▪ Recently referenced items are likely 

to be referenced again in the near future

 Spatial locality:  
▪ Items with nearby addresses tend 

to be referenced close together in time
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Locality Example

 Data references
▪ Reference array elements in succession 

(stride-1 reference pattern).

▪ Reference variable sum each iteration.

 Instruction references
▪ Reference instructions in sequence.

▪ Cycle through loop repeatedly. 

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

Spatial or Temporal
Locality?

temporal

spatial

temporal

spatial

Temporal

Spatial
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Qualitative Estimates of Locality
 Claim: Being able to look at code and get a qualitative sense 

of its locality is a key skill for a professional programmer.

 Question: Does this function have good locality with respect 
to array a?

int sum_array_rows(int a[M][N])

{

    int i, j, sum = 0;

    for (i = 0; i < M; i++)

        for (j = 0; j < N; j++)

            sum += a[i][j];

    return sum;

}

Answer: yes
Stride-1 reference

pattern

Hint: array layout
 is row-major order

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• •  •
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Locality Example

 Question: Does this function have good locality with 
respect to array a?

int sum_array_cols(int a[M][N])

{

    int i, j, sum = 0;

    for (j = 0; j < N; j++)

        for (i = 0; i < M; i++)

            sum += a[i][j];

    return sum;

}

Answer: no

Stride N reference
pattern

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• •  •

Note: If M is very small
then good locality. Why?
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Locality Example

 Question: Can you permute the loops so that the function 
scans the 3-d array a with a stride-1 reference pattern 
(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])

{

    int i, j, k, sum = 0;

    for (i = 0; i < N; i++)

        for (j = 0; j < N; j++)

            for (k = 0; k < M; k++)

                sum += a[k][i][j];

    return sum;

}

Answer: make j the inner loop

$ time ./loopijk

real    0m2.765s

user    0m2.328s

sys     0m0.422s

$ time ./loopkij

real    0m1.651s

user    0m1.234s

sys     0m0.422s
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What Makes Locality A Good Heuristic?

 Remember that we care about spatial and temporal locality 
because they allow us to estimate the working set.

 But, what makes them a particularly good way of doing 
that?

 They are simple enough to implement efficiently in 
hardware without slowing things down too much
▪ Temporal locality can be managed by keeping the most recently 

used objects and letting go of the least recently used objects. 

▪ Spatial locality is natural to model by maintaining blocks of nearby 
objects vs individual objects

▪ They can be learned quickly enough to be of value in the future

▪ They don’t require prior knowledge or understanding of the task. 
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Is Locality Always a Good Heursitic?
 Spatial and temporal locality are heuristics. They are not 

necessarily applicable to all workloads. 

 As one example, consider streaming data to preprocess it 
enroute to an AI algorithm or other application. 
▪ Spatial locality still applies:  If we access one piece of data, we’re 

likely to access the next piece of data next. 

▪ But, temporal locality no longer applies: Once we’ve seen it and 
processed it, we won’t look back

▪ The working set is a dynamically moving window. 

 In this situation, we might want to a heuristic that suggests, 
“After N sequential accesses, beginning prefetching ahead 
of the current accesses to overlap I/O and processing.”
▪ Future attraction: We see this in the OS paging system, for example. 
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Today

 The memory abstraction        CSAPP 6.1.1
 RAM : main memory building block    CSAPP 6.1.1
 Storage technologies and trends     CSAPP 6.1.2-6.1.4
 The memory hierarchy      CSAPP 6.3
 Working sets       CSAPP 6.2
 Locality of reference      CSAPP 6.2
 Caches        CSAPP 6.4-6.5
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Caches

 Cache: A smaller, faster storage device that acts as a staging 
area for a subset of the data in a larger, slower device.

 Fundamental idea of a memory hierarchy:
▪ For each k, the faster, smaller device at level k serves as a cache for the 

larger, slower device at level k+1.

 Why do memory hierarchies work?
▪ Because of locality, programs tend to access the data at level k more 

often than they access the data at level k+1. 

▪ Thus, the storage at level k+1 can be slower, and thus larger and 
cheaper per bit.

 Big Idea (Ideal):  The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage near the 
bottom, but that serves data to programs at the rate of the 
fast storage near the top.
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General Cache Concepts
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General Cache Concepts: Hit
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General Cache Concepts: Miss
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General Caching Concepts: 
3 Types of Cache Misses

 Compulsory miss
▪ Compulsory misses occur because the cache starts empty and this is the 

first reference to the block.

 Capacity miss
▪ Occurs when the set of active cache blocks (working set) is larger than 

the cache.

 Conflict miss
▪ Most caches limit blocks at level k+1 to a small subset (sometimes a 

singleton) of the block positions at level k.

▪ E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

▪ Conflict misses occur when the level k cache is large enough, but multiple 
data objects all map to the same level k block.

▪ E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
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Examples of Caching in the Mem. Hierarchy
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Summary
 The speed gap between CPU, memory and mass storage 

continues to widen and the average cost of a storage 
approximate our cheapest memory 

 Careful movement of data can allow us to have the 
average access approximate our fastest memory  
▪ An understanding of the behavior of our work, including its 

working set, locality, etc, can enable us to facilitate this movement. 

 Memory hierarchies based on caching close the gap by 
exploiting locality.

 Flash memory progress outpacing all other memory and 
storage technologies (DRAM, SRAM, magnetic disk)
▪ Able to stack cells in three dimensions
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Supplemental slides
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Metric  1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB  880 100 30 1 0.1 0.06 0.02 44,000

access (ns) 200 100 70 60 50 40 20 10

typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage Trends

DRAM

SRAM

Metric  1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB  100,000 8,000 300 10 5 0.3 0.03 3,333,333

access (ms) 75 28 10 8 5 3 3 25

typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric  1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB  2,900 320 256 100 75 60 320 116

access (ns) 150 35 15 3 2 1.5 200 115
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CPU Clock Rates

1985 1990 1995 2003 2005 2010 2015 2015:1985

CPU  80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h) 

Clock 

rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500

Cycle 

time (ns) 166 50 6 0.30 0.50 0.4 0.33 500

Cores  1  1 1 1 2 4 4 4

Effective

cycle 166 50 6 0.30 0.25 0.10 0.08 2,075

time (ns)

Inflection point in computer history
when designers hit the “Power Wall”

(n) Nehalem processor
(h) Haswell processor


	Slide 1
	Slide 2: The Memory Hierarchy  18-213/18-613: Introduction to Computer Systems 9th Lecture, February 12, 2024
	Slide 3: Today
	Slide 4: Today’s Goal
	Slide 5: Writing & Reading Memory
	Slide 6: Traditional Bus Structure Connecting  CPU and Memory
	Slide 7: Memory Read Transaction (1)
	Slide 8: Memory Read Transaction (2)
	Slide 9: Memory Read Transaction (3)
	Slide 10: Memory Write Transaction (1)
	Slide 11: Memory Write Transaction (2)
	Slide 12: Memory Write Transaction (3)
	Slide 13: Today
	Slide 14: Random-Access Memory (RAM)
	Slide 15: RAM Technologies
	Slide 16: SRAM vs DRAM Summary
	Slide 17: Enhanced DRAMs
	Slide 18: Conventional DRAM Organization
	Slide 19: Reading DRAM Supercell (2,1)
	Slide 20: Reading DRAM Supercell (2,1)
	Slide 21: Memory Modules
	Slide 22: Today
	Slide 23: Storage Technologies
	Slide 24: What’s Inside A Disk Drive?
	Slide 25: Disk Geometry
	Slide 26: Disk Capacity
	Slide 27: Disk Operation (Single-Platter View)
	Slide 28: Disk Operation (Multi-Platter View)
	Slide 29: Disk Access – Service Time Components
	Slide 30: Disk Access Time
	Slide 31: Disk Access Time Example
	Slide 32: I/O Bus
	Slide 33: Reading a Disk Sector (1)
	Slide 34: Reading a Disk Sector (2)
	Slide 35: Reading a Disk Sector (3)
	Slide 36: Nonvolatile Memories
	Slide 37: Solid State Disks (SSDs)
	Slide 38: SSD Performance Characteristics 
	Slide 39: SSD Tradeoffs vs Rotating Disks
	Slide 40: Today
	Slide 41: Memory Hierarchies
	Slide 42: Example Memory       Hierarchy
	Slide 43: The CPU-Memory Gap
	Slide 44: Today
	Slide 45: Working Sets 
	Slide 46: Working Sets 
	Slide 47: Determining the Working Set
	Slide 48: Today
	Slide 49:  Locality:  A Heuristic for Approximating the Working Set
	Slide 50: Locality Example
	Slide 51: Qualitative Estimates of Locality
	Slide 52: Locality Example
	Slide 53: Locality Example
	Slide 54: What Makes Locality A Good Heuristic?
	Slide 55: Is Locality Always a Good Heursitic?
	Slide 56: Today
	Slide 57: Caches
	Slide 58: General Cache Concepts
	Slide 59: General Cache Concepts: Hit
	Slide 60: General Cache Concepts: Miss
	Slide 61:  General Caching Concepts:  3 Types of Cache Misses
	Slide 62: Examples of Caching in the Mem. Hierarchy
	Slide 63: Summary
	Slide 64: Supplemental slides
	Slide 65: Storage Trends
	Slide 66: CPU Clock Rates

