Carnegie Mellon

UL o —a

o 521

= Y \ < B A st o ettt itstttn.
14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Cache Memories

18-213/18-613: Introduction to Computer Systems
10t Lecture, September 26th, 2024

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Re m i N d e r: A I V P OI i cy http://www.cs.cmu.edu/~18213/academicintegrity.html

m No unauthorized use of information
= Borrowing code: by copying, retyping, looking at a file
= Describing: verbal description of code from one person to another

= Searching the Web for solutions
= Copying code from a previous course or online solution
= Reusing your code from a previous semester (here or elsewhere)

m No unauthorized supplying of information
= Providing copy: Giving a copy of a file to someone

= Providing access:
= Putting material in unprotected directory
= Putting material in unprotected code repository (e.g., Github)

m No collaborations beyond high-level, strategic advice
= Anything more than block diagram or a few words

Start early. Make frequent github commits. Plan for stumbling blocks. Use available help.
Don’t panic: Far better to turn in 25% correct solution than get an AlV.

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html

Carnegie Mellon

Today

m Cache memory organization and operation CSAPP 6.4-6.5
m Performance impact of caches

" The memory mountain CSAPP 6.6.1

= Rearranging loops to improve spatial locality CSAPP 6.6.2

= Using blocking to improve temporal locality CSAPP 6.6.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Recall: General Cache Concepts

Smaller, faster, more expensive
Cache 4 9 14 3 memory caches a subset of
the blocks
Data is copied in block-sized
4 transfer units
Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
000000000000 OCGOGOG OO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 3 12 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
O 000000000000 OCGOGEOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cach 2 5 12 3 Block b is not in cache:
ache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)
O 000000000000 OCGOGEOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Working Set, Locality, and Caches

m Working Set: The set of data a program is currently “working on”
= Definition of “currently” depends on context, e.g., in this loop
" |ncludes accesses to data and instructions

m Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

= Nearby addresses: Spatial Locality
= Equal addresses: Temporal locality

m Caches take advantage of temporal locality by storing recently
used data, and spatial locality by copying data in block-sized
transfer units

= Locality reduces working set sizes
= Caches are most effective when the working set fits in the cache

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recall: 3 Types of Cache Misses

m Cold (compulsory) miss

= Cold misses occur because the cache starts empty and this is the first
reference to the block.

m Capacity miss
= QOccurs when the set of active cache blocks (working set) is larger than
the cache.
m Conflict miss

= QOccurs when the cache is large enough, but too many data objects all
map (by the placement policy) to the same limited set of blocks

= E.g., if the placement policy maps both 0 and 8 to the same block,
then referencing0, 8,0, 8, 0, 8§, ... would miss every time.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

CPU Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware

= Hold frequently accessed blocks of main memory
m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file
Cache <—>
memory % |
@ ﬁ System bus Memory bus
e N
Bus interface < :::: > I./O <:::> ain
bridge memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

ALU

Carnegie Mellon

What it Really Looks Like

CPU chip

Register file
Cache <—> |:> ALU
memory (]

Bus interface

Core 17-3960X
R S
Queue, Uncore
: & I/0

ghei- +-—g Wi A

Shared &

2 L3 Cache

| HyperTransport™ Phy | [m:]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Ed|t|on 11

Carnegie Mellon

What it Really Looks |ke (ont)

3

FXF:’E'?»':i F'f’ag}ﬁ-::'
SIMD | © &=l SIMD |

e AMUEEs SEAF Py : .
Memory, T ol T Sy R RVt %

Control "Golden Cove : "Golden Cove" ""Golden Cove' -Golden Cove iy)| . sferre (4
3 ! +.CPU. Core | |#:-CPU Core' E" e }' el 'Media L AI8X TMUs;

e L R o v' o .—--...-_--'
e " . e uW — ¥

. ' - v = P =
PR 2 P PiAa = T i | - AL1/Texs,

— — y : — (Eracemont : - 38 : 4 SL:M-
| -1l2smiB || [-125MiB ¢ || -1 i25MiB e FCRUiCoreR -
-L2$/MLC:| = —L2$/MLC ‘L2$/MLCo = | {=L2$/MiCHEE. R D
H s PR B LT —2 ae 8 "iuml ;— 29 Tsem Ve : ..1 se ot 1 s
i L3MIB . [E3MiBT 3MiB, © "~ 3MiB [~ 3MiB
System Agent L3$/LLC | + L3$/LLC | - “L3$/LLC :°°| L3$/LLC L3$/LLC
X = =

; _' 2x - - d D X ~ox . 4] e Koy 2x e GPU Front/‘Backend'
Ring.Agent = Ring Agent Ring:Agent Ring Agent Ring . Agent g GRUIL3$;- =
= —se—a U el 3 — e — e el | et Otherilogices

. 3MiB ' 3M_|B ~ - 3MiB -, " 3MiB - .- | 3MiB ' :

L3$/LLC © | L3$/LLC - | L3$/LLC L3$/LLC .- | L3$/LLC

R K T YY) ‘v =) .r ==/ - l' E

~1.25MiB = | | -2 1. 25MiB < g ~~1 25MiB™ ~1.25MiB= . . : - . ‘ B
: L2$/MLC L2$/MLC S E2$/MLC | bl o ; = - [8X'TMUs,
- a7 " =k ¥) : L17/Tex$;

GNA3.0. 8.

1013U03 '0:IWA B, °19d

3 = SRS —
A 253 -
< - il .o g -

Golden Cove ’ Golden Cove “T'Golden Cove Golden Cove‘
CPU Core % CPU Core = «CPU Core == CPU .Core ...

e LI e e s Al R — S e D LS r(;racemonJT
. _: : U= CaE T ds e = Emiac L [: D -CPU Core £ .
FPU/ |2 1 FRuy [FPU/ | BT) FRUY b :,!" ‘ ol 0 b S esieren

"SIMD Th s “AHISIMD || e HISIMD |k -'-“‘s'IMD '2M|BL2$/MLC;- 3 S R

e WK Ao b > ».A.:z ',—._\.xt

_—-.,«-,{

»

10nm ESF/InteI 7 Alder Lake dle shot (~209mm2) from Intel via Andreas Schilling on Twitter:
https:/ /twitter.com/aschilling/status/1453391035577495553

Die shot interpretation by Locuza, October 2021

L1 caches per P-core: 32KB Instruction & 48KB Data
Intel Alder Lake (2021) L1 caches per E-core: 64KB Instruction & 32KB Data

8 P-cores + 8 E-cores
L3 cache: 30MB shared among all cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
' N\
4 —
XEX —1
XEX
S=ZSSEtS< o000

\.
Cache size
=S X E x B data bytes
v tag 0 1 2 B-1
T N— __J/
- v
valid bit B = 20 bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

CaChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
- A ~ * Locate data starting
r at offset
o000

Address of word:
t bits s bits | b bits
1\ W
S=ZSSEtS< o000 R
tag set block
index offset

data begins at this offset

Vv tag 0 1 2 oooooo B-1

— g

valid bit B = 2® bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

4 Address of int:
Vv tag 01112)13|4)15]16)7 -
t bits 0..01 | 100

v tag 0|]1]12)3}|4]|5]|6]7

find set

S$=25 sets<

'} tag 0|]112)3}|4]|5]|6]7

v tag 0|]112)3}|4]|5]|6]7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag ol1]2]|3]|a]|5]6]7

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 0|]112)3}]4]|5]|6]7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Direct-Mapped Cache Simulation

t=1 s=2 b=l 4-bit addresses (address space size M=16 bytes)
X XX X S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 0000,], miss (cold)
1 0001,], hit
7 0111,], miss (cold)
8 1000,], miss (cold)
0 [0000,] miss (conflict)
v Tag Block

Set0 | 1 0 M[0-1]

Set1| O

Set2 | O

Set3 | 1 0 M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

2 lines per set t bits 0..01 | 100
A
' N\
(
'} tag 01112)1314]|5]|6]7 v tag | 0|1|2]|314]|5]|6]7
vl | tag | |o]1|2]|3]|4]5]6]7 v|] [tag | [0]1]2]3]a]5]6]7 —Ifind set
< Vv tag 01112]|3|4]|5]|6]|7 Y} tag 011|2|3]|4]|5]|6]|7
0 0000000000000 00000000 00000000000 OCOG®EOSOSEOSOO®OSTOS OO
'} tag 0]112]|314]|5]|6]|7 '} tag | 0|1|2]|314]|5]|6]7
\.
S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0]1)12]|3]|4]|5]6]7 v tag 01112]13]4]|5]6]|7)| —

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v| | tag | |o]1]2]3]af5]6]7]] |[v] | _tag | |[0]1]2]|3]a[5]6]7|] —

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=l
XX X X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 (0000, hit

v Tag Block

sero | L_]00 [M[0-1
1 |10 [M[8-9]
ot 1 é 01 | MI[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

What about writes?

m Multiple copies of data exist: v]|d]| teg | [O]1]2f--ee B-1
= L1, L2, L3, Main Memory, Disk I'd_bT' T _ N~
valid bit dirty bit B = 25 bytes

m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data differs from memory)

m What to do on a write-miss?
= \Write-allocate (load into cache, update line in cache)
= Good if more writes to the location will follow
= No-write-allocate (writes straight to memory, does not load into cache)
m Typical

= Write-through + No-write-allocate
= Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

/ Standard Method: N\
Middle bits indexing

4 Address of int:
Vv tag 01112)13|4)15]16)7 -
t bits 0..01 | 100

v tag 0|]1]12)3}|4]|5]|6]7

k find set /

S =25 sets <
Y tag 0j1f2]3]4)1>5]6]7 /Alternative Method: \
High bits indexing
00000000000 OCOGEOGEOEOGEOSGSOSOISNIO
Address of int:
v tag 0j112]|3|4]|5]|6]7 1..11 t bits 100
\. .
find set

_ J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

lllustration of Indexing 0000xx
Approaches PO L
0010xx

m 64-byte memory 001 Lxx
" 6-bit addresses 01 00xx

m 16 byte, direct-mapped cache 0101xx
m Block size = 4. (Thus, 4 sets; why?) 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 0111xx
1000xx

1001xx

Set 0 1010xx

Set 1 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

. . . 0000xx
Middle Bits Indexing 0001xn
0010xx
m Addresses of form TTSSBB
0011xx
= TT Tag bits
0100xx
= SS Set index bits
. 0101xx
"= BB Offset bits
. . 0110xx
m Makes good use of spatial locality
0111xx
1000xx
1001xx
Set 0 1010xx
Set 1 1011xx
Set 2 1100xx
Set 3 1101xx
1110xx
1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

° ° ° 0000xx
High Bits Indexing 0001xn
0010xx
m Addresses of form SSTTBB
0011xx
" SS Set index bits
0100xx
= TT Tag bits
) 0101xx
"= BB Offset bits
. . . . 0110xx
m Program with high spatial locality 0111
XX
would generate lots of conflicts
1000xx
1001xx
Set 0 1010xx
Set 1 1011xx
Set 2 1100xx
Set 3 1101xx
1110xx
1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€8s €8s Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,

Access: 10 cycles

L2 unified cache L2 unified cache

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

L3 unified cache .
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Example: Core i7 L1 Data Cache

\
>
& 3
W
L. E = 2¢ lines per set Q\d‘. 000 @\0
32 KB 8-way set associative 7 = N 0 10 10000
64 bytes/block | | CEERY I ; ; 83‘1’(1)
47 bit address range | | Jesee[] 2 -2 82(1)%
S=2’sets< | II |oo¢o: 5 5 0101
= 6 | 6 | 0110
S_ S_ P00 0 OO0 P 0P OOOSORDORDRORROERDROEROERRDN -7 '7 0111
’ eeee[] 8 [8 |1000
E= ,e= - | I | 9 |9 1001
A |10 1010
C= Cache size: B |11 | 1011
~ 1ozl - C =S x E x B data bytes C [12] 1100
(] e Jlofalo] o for] D [13] 1101
I_('ib_t — E |14 | 1110
valie ot F [15] 1111
Address of word:
t bits s bits | b bits
W_W
ta set block
s index offset Stack Address: Block offset: 0x?°?
0x00007£7262al1le010 Set index: 0x??
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Example: Core i7 L1 Data Cache

>
& 3
L. E = 2¢ lines per set Q\d‘. 000\6\(\9‘
32 kB 8-way set associative 7 N 0 10 10000
64 bytes/block | | CEERY I ; ; 83‘1’(1)
47 bit address range | I N 2 _2 82(1)3
B =64 S=2setsq | | Jeeee[1] 5 |5 | 0101
= 6 | 6 | 0110
S=64’S=6 P00 0 OO0 P 0P OOOSORDORDRORROERDROEROERRDN g -; gééé
E=8,e=3 | J g — 9 [9 | 1001
_ - A |10 1010
c - 64 x 64 x 8 - 32,768 CaChe Size: B 11 1011
~ 1ozl - C =S x E x B data bytes C |12 | 1100
[v] [e] [o]s]2]]e1] 5 T13 11101
I_('ib_t — E |14 | 1110
valanl F |15 1111
Address of word:
t bits s bits | b bits
— A
tag set block Stack Add . Block offset: 0x?°?
index offset tac ress: oc. offset: xX?%
0x00007£7262al1le010 Set index: 0x??
Block offset: 6 bits Tag: 0x??

Set index: 6 bits
Tag: 35 bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Example: Core i7 L1 Data Cache

>
&
E = 2¢ lines per set Q@-‘. 000\2\‘{&
32 kB 8-way set associative e N 0 70 10000
64 bytes/block | | X I AR EE I
47 bit address range | I N 2 _2 82(1)3
S = 25 sets < | | |.-..| | 5|5 | 0101
B =64 6 | 6 | 0110
S=64’S=6 L N NN NN NN NN NN N NN -7 -7 0111
8 | 8 | 1000
E=8,e=3 . I e 9 [9 [1001
C=64x64x8=32,768 S AT I
I_"—rll we | [0]1]2] - [o1] C =S x E x B data bytes g 1% iigg
\ralir.li bit = g - E 14 1110
F |15 1111
Address of word:
t bits s bits | b bits
— AN
== i:g:x ::f;kt Stack Address: Block offset: 0x10
0x00007£7262al1le010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£f7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 000O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Cache Performance Metrics

m Miss Rate

" Fraction of memory accesses not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (as %):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
" Time to deliver a cached block to the processor
= includes time to determine whether line is in cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

How Bad Can a Few Cache Misses Be?

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles =4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Quiz Time!

Canvas Quiz: Day 10 — Cache Memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Today

m Performance impact of caches

®= The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

& array '"data" with stride of "stride“,
3 using 4x4 loop unrolling.
*/

int test(int elems, int stride) {
long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO = 0, acecl = 0, acec2 = 0, ace3 = 0;
long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */
for (i = 0; i < limit; 1 += sx4) {
acc0 = accO0 + datal[i];
accl = accl + data[i+stride];
acc2 acc2 + data[i+sx2];
acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */
for (; 1 < length; i++) {
acc0 = accO0 + datal[i];

}

return ((accO + accl) + (acc2 + acec3));

} mountain/mountain.c

Call test () with many
combinations of elems
and stride.

For each elems and
stride:

1. Call test() once to
warm up the caches.

2. Call test() again and

measure the read
throughput(MB/s)

38

Carnegie Mellon

Core i7 Haswell
- 2.1 GHz
The Memory Mountaln 32 KB L1 d-cache
256 KB L2 cache

Aggress{ve 8 MB L3 cache
prefetching | T~ -~ 64 B block size
16000

. 14000

©

S 12000

= |

S 10000 +—

£ 8000 k Ridges

5 | |—>- of temporal

§ 6000 :

g locality

4000

2000 + A
Slopes T
of spatial s
locality 128k
5 | g 512k
T T 2m
s’ Th-h""l-u.,_ T 'I’r 8m
Stride (x8 bytes) s9 T Size (bytes)
T 32m
s11
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Closer Look at Stride Effects

Stride Slze

Throughput for size = 128K

35000 /\
30000
wiss rate = stride/8
\ Miss rate = 1.0
X

3

25000

@ 20000

MB/s

-
15000 Measured

10000

5000 8 elems per
cache block

sl s2 s3 s4 s5 s6 s/ s8 s9 s10 s11 s12
stride

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Matrix Multiplication Example

TP __ Variable sum

= Description: /* ijk */ held in register
= Multiply N x N matrices for (i=0; i<n; i++) {
= Matrix elements are for (j=0; j<n; j++) {

doubles (8 bytes) sum = 0.0; <
for (k=0; k<n; k++)

= O(N3) total operations
sum += a[i] [k] * b[k]1[j];

= N reads per source
element

c[i][]]

sum,

= N values summed per matmult/mm.c
destination

= but may be able to
hold in register

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

= ook at access pattern of inner loop

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
"= for (i = 0; 1 < N; 1i++)
sum += a[0][1];
= accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
* miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; i++)
sum += a[i] [0];
= accesses distant elements
" no spatial locality!

= miss rate =1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k][j];
c[1][]]
}

sum,

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

} matmult/mm.c

Inner loop:
(*,i)
ij)
—on UL | [
A B C
Row-wise Column- Fixed
wise

Block size = 32B (four doubles)

45

Carnegie Mellon

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; J++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]j];
c[i1][3]] =
}

sSum

matmult/mm.c

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

Same analysis as 1jk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Inner loop:

(%)
()

—n L
]

Row-wise Column- Fixed
wise

Block size = 32B (four doubles)

46

Carnegie Mellon

Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i k) i(k’*)g
r = a[i] [k]; O (i,*)
B C

for (j3=0; j<n; j++) A
c[i1][]J] += r * b[k][]]; ‘ ‘

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B C

0.0 0.25 0.25
Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Matrix Multiplication (ki)

/* 3ki */ Inner loop:
for (j=0; j<n; Jj++) { (* k) (*j)
for (k=0; k<n; k++) { j:| (k) |:I:
r = b[k][j]; N
for (1=0; i<n; i++) A B C
c[i][j] += al[il[k] * r; | ‘ ‘
}
matmult/mm.cf Column- Fixed Column-

wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k]1[j];
c[i][J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; J++)
c[i][J] += r * b[k][]]’
}
}

for (3=0; j<n; Jj++) {
for (k=0; k<n; k++) {
r = b[k][3];
for (i=0; i<n; i++)
c[i][J] += al[i]l[k] * r;

ijk (& jik):
e 2 |oads, O stores
* avg misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
e avg misses/iter = 0.5

jki (& kji):
e 2 |oads, 1 store
* avg misses/iter = 2.0

49

Carnegie Mellon

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration
100

jki/kji (2.0)

—+-jki
-—-kji
=1 jk
ik

ijk/jik (1.25)

10

_/‘w
kij/ikj (0.5)
1 | | | | | | | | | | | | | |

50 100 150 200 250 300 350 400 450 500 550 600 650 700

Array size (n)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Example: Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; i < n; i++)
for (j = 0; j < n; J++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache line = 8 doubles

® Cache size C << n (much smaller than n)

m Firstiteration: r ~N

= n/8 +n=9n/8 misses

]
X

= Afterwards in cache:
(schematic) - [—

Il
X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache line = 8 doubles

® Cache size C << n (much smaller than n)

n
m Second iteration: —
= Again: -
n/8 + n =9n/8 misses _
- X
8 wide

m Total misses:
" 9n/8 n? =(9/8) n3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (1 = 0; i < n; i+=L)

for (j = 0; j < n; j+=L)
for (k = 0; k < n; k+=L)
/* L x L mini matrix multiplications */
for (i1 = i; il < i+L; il++)
for (j1 = j; jl < Jj+L; jl++)
for (k1 = k; k1l < k+L; kl++)
c[il*n+3j1l] += a[il*n + kl]*b[kl*n + jl];

} matmult/bmm.c

j1
C a b o]
= X +
N bl (| [|
1
Block size L x L 55

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache line = 8 doubles. Blocking size L> 8
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3L?<C

. . . n/L blocks
m First (block) iteration:

A
' N\
x

= Blocks per Iteration: 2n/L

(omitting matrix c)
= Misses per lteration:

2/g =
2n/L x L2/8 = nL/4 Block size L x L

] HEREE
= Afterwards in cache
(schematic) X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache line = 8 doubles. Blocking size L> 8
® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3L?<C

. . n/L blocks
m Second (block) iteration: A

r N\
" Same misses as [] L]

first iteration
= 2n/L xL%/8 =nL/4

X

Block size L x L
m Total misses:

=" nL/4 misses per iteration x (n/L)? iterations = n3/(4L) misses

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Blocking Summary

m No blocking: (9/8) n® misses
m Blocking: (1/(4L)) n® misses

m Use largest block size L, such that L satisfies 3L2 < C

® Fit three blocks in cache! Two input, one output.

m Reason for dramatic difference:

= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!

= But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects sequentially
with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Supplemental slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Core i5 Haswell
1 3.1 GHz
The Memory Mountain S ke
Aggressive 256 KB L2 cache

prefetching 8 MB L3 cache
64 B block size

g 24000
2
g Ridges
= of temporal
§ locality
o

Slopes S

of spatial T e 32k

locality 512k

7 —
Size (bytes)

$13o8m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Cache Capacity Effects from Core i7 Haswell

3.1 GHz
MemOry Mountain 32 KB L1 d-cache

256 KB L2 cache
8 MB L3 cache

30000 64 B block size
25000
«
m 20000
2
E Main
£ 15000 L3 L2 K| ,
o Memory Slice through
e
= memor
2 10000 V _
o mountain with
stride=8
5000
0

Working set size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Modeling Block Size Effects
from Memory Mountain

Throughput for size = 128K

Carnegie Mellon

Core i7 Haswell
2.26 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

35000
6
30000 /\ _ 10
\ Throughput =
25000 / 80S + 243
9 20000
§ == \leasured
2 15000 ==Model
10000
5000
0
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 Strides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

63

Carnegie Mellon

2008 Memory Mountain o

32 KB L1 d-cache
6MB L2 cache
64 B block size

No,
s0000 . Prefetching \

18000 L .
| .-_-_-.__.__.._.
16000 |

14000 ‘T

12000 ~—
10000
8000

6000

Read throughput (MB/s)

—

4000 -+

2000 -~
0 1I__%__%_,r__._..
s1

S 128k
512k

Stride (x8 bytes 9- ~— |
(x8 bytes) S ©39m Size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Matrix Multiplication (ik j)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i k) i(k’*)g
r = a[i] [k]; O (i,%)
B C

for (j=0; j<n; j++) A
c[i][]J] += r * b[k][]]’ ‘ ‘ ‘

Inner loop:

ma tmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 025 0.25
Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Matrix Multiplication (kji)

/* kji */
Inner loop:
for (k=0; k<n; k++) {
for (j=0; j<n; j++) { (* k) *,J)

r = b[k] [3]; ” (k,j) H
for (i=0; i<n; i++) .

c[i][§] += a[il[k] * r; A B ¢

matmult/mm.c ‘ ‘ ‘
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Recap: Stack and instruction pointers

Shared
m The stack pointer (%rsp) LI
points to the top of the stack Stack — rsp
m The instruction pointer (%rip)
points to the next instruction
to be executed
m They are independent
= But linked by call and ret
instructions
Heap
Data
Text «— rip

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Recap: stack operations

m push %rax =

more stuff

\- < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

'
AL

rax

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

'
AL

m call func=

rax

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

'
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

a'a
AL

rip

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

'
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

a'a
AL

m ret=
rip

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

'
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func \ < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Carnegie Mellon

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

m call func= > 3
= sub %rsp, 8
o rin (0 rax
" mov %rip, (%rsp)
= jmp func \ < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8

m pop %rax =

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

Carnegie Mellon

Recap: stack operations

m push %rax = i)
= sub %rsp, 8 more stuff
" mov %rax, (%rsp)
m call func= S < P

= sub %rsp, 8
" mov %rip, (%rsp)
= jmp func

m ret=
" mov (%rsp), %rip
= add %rsp, 8

m pop %rax =
" mov (%rsp), %rax
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 75

	Slide 1
	Slide 2: Cache Memories 18-213/18-613: Introduction to Computer Systems 10th Lecture, September 26th, 2024
	Slide 3: Reminder: AIV Policy
	Slide 4: Today
	Slide 5: Recall: General Cache Concepts
	Slide 6: General Cache Concepts: Hit
	Slide 7: General Cache Concepts: Miss
	Slide 8: Working Set, Locality, and Caches
	Slide 9: Recall: 3 Types of Cache Misses
	Slide 10: CPU Cache Memories
	Slide 11: What it Really Looks Like
	Slide 12: What it Really Looks Like (Cont.)
	Slide 13: General Cache Organization (S, E, B)
	Slide 14: Cache Read
	Slide 15: Example: Direct Mapped Cache (E = 1)
	Slide 16: Example: Direct Mapped Cache (E = 1)
	Slide 17: Example: Direct Mapped Cache (E = 1)
	Slide 18: Direct-Mapped Cache Simulation
	Slide 19: E-way Set Associative Cache (Here: E = 2)
	Slide 20: E-way Set Associative Cache (Here: E = 2)
	Slide 21: E-way Set Associative Cache (Here: E = 2)
	Slide 22: 2-Way Set Associative Cache Simulation
	Slide 23: What about writes?
	Slide 24: Why Index Using Middle Bits?
	Slide 25: Illustration of Indexing Approaches
	Slide 26: Middle Bits Indexing
	Slide 27: High Bits Indexing
	Slide 28: Intel Core i7 Cache Hierarchy
	Slide 29: Example: Core i7 L1 Data Cache
	Slide 30: Example: Core i7 L1 Data Cache
	Slide 31: Example: Core i7 L1 Data Cache
	Slide 32: Cache Performance Metrics
	Slide 33: How Bad Can a Few Cache Misses Be?
	Slide 34: Writing Cache Friendly Code
	Slide 35: Quiz Time!
	Slide 36: Today
	Slide 37: The Memory Mountain
	Slide 38: Memory Mountain Test Function
	Slide 39: The Memory Mountain
	Slide 40: Closer Look at Stride Effects
	Slide 41: Today
	Slide 42: Matrix Multiplication Example
	Slide 43: Miss Rate Analysis for Matrix Multiply
	Slide 44: Layout of C Arrays in Memory (review)
	Slide 45: Matrix Multiplication (ijk)
	Slide 46: Matrix Multiplication (jik)
	Slide 47: Matrix Multiplication (kij)
	Slide 48: Matrix Multiplication (jki)
	Slide 49: Summary of Matrix Multiplication
	Slide 50: Core i7 Matrix Multiply Performance
	Slide 51: Today
	Slide 52: Example: Matrix Multiplication
	Slide 53: Cache Miss Analysis
	Slide 54: Cache Miss Analysis
	Slide 55: Blocked Matrix Multiplication
	Slide 56: Cache Miss Analysis
	Slide 57: Cache Miss Analysis
	Slide 58: Blocking Summary
	Slide 59: Cache Summary
	Slide 60: Supplemental slides
	Slide 61: The Memory Mountain
	Slide 62: Cache Capacity Effects from Memory Mountain
	Slide 63: Modeling Block Size Effects from Memory Mountain
	Slide 64: 2008 Memory Mountain
	Slide 65: Matrix Multiplication (ikj)
	Slide 66: Matrix Multiplication (kji)
	Slide 67: Recap: Stack and instruction pointers
	Slide 68: Recap: stack operations
	Slide 69: Recap: stack operations
	Slide 70: Recap: stack operations
	Slide 71: Recap: stack operations
	Slide 72: Recap: stack operations
	Slide 73: Recap: stack operations
	Slide 74: Recap: stack operations
	Slide 75: Recap: stack operations

