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Reminder: AIV Policy
 No unauthorized use of information

▪ Borrowing code: by copying, retyping, looking at a file

▪ Describing: verbal description of code from one person to another

▪ Searching the Web for solutions

▪ Copying code from a previous course or online solution

▪ Reusing your code from a previous semester (here or elsewhere)

 No unauthorized supplying of information
▪ Providing copy: Giving a copy of a file to someone

▪ Providing access:

▪ Putting material in unprotected directory

▪ Putting material in unprotected code repository (e.g., Github)

 No collaborations beyond high-level, strategic advice
▪ Anything more than block diagram or a few words

 Start early. Make frequent github commits. Plan for stumbling blocks. Use available help. Don’t panic: Far better to turn in 25% correct solution than get an AIV.

Start early. Make frequent github commits. Plan for stumbling blocks. Use available help.

Don’t panic: Far better to turn in 25% correct solution than get an AIV.

http://www.cs.cmu.edu/~18213/academicintegrity.html

http://www.cs.cmu.edu/~18213/academicintegrity.html

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html
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Today

 Cache memory organization and operation CSAPP 6.4-6.5

 Performance impact of caches

▪ The memory mountain    CSAPP 6.6.1

▪ Rearranging loops to improve spatial locality  CSAPP 6.6.2

▪ Using blocking to improve temporal locality  CSAPP 6.6.3
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Recall: General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!



Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)
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Working Set, Locality, and Caches

 Working Set: The set of data a program is currently “working on”
▪ Definition of “currently” depends on context, e.g., in this loop

▪ Includes accesses to data and instructions

 Principle of Locality: Programs tend to use data and instructions 
with addresses near or equal to those they have used recently

▪ Nearby addresses: Spatial Locality

▪ Equal addresses: Temporal locality

 Caches take advantage of temporal locality by storing recently 
used data, and spatial locality by copying data in block-sized 
transfer units
▪ Locality reduces working set sizes

▪ Caches are most effective when the working set fits in the cache
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Recall: 3 Types of Cache Misses

 Cold (compulsory) miss

▪ Cold misses occur because the cache starts empty and this is the first 
reference to the block.

 Capacity miss
▪ Occurs when the set of active cache blocks (working set) is larger than 

the cache.

 Conflict miss
▪ Occurs when the cache is large enough, but too many data objects all 

map (by the placement policy) to the same limited set of blocks 

▪ E.g., if the placement policy maps both 0 and 8 to the same block, 
then referencing 0, 8, 0, 8, 0, 8, ... would miss every time.
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CPU Cache Memories

 Cache memories are small, fast SRAM-based memories 
managed automatically in hardware

▪ Hold frequently accessed blocks of main memory

 CPU looks first for data in cache

 Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache 
memory
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What it Really Looks Like

Bus interface

ALU

Register file

CPU chip

Cache 
memory

Core i7-3960XAMD FX 8150Nehalem
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What it Really Looks Like (Cont.)

Intel Alder Lake (2021)
8 P-cores + 8 E-cores

L1 caches per P-core: 32KB Instruction & 48KB Data
L1 caches per E-core: 64KB Instruction & 32KB Data
L2 caches: 1.25MB per P-core, 2MB per four E-cores
L3 cache: 30MB shared among all cores
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General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size
 = S x E x B data bytes

valid bit
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Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset
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Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid?   +

block offset

tag
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid?   +

int (4 Bytes) is here

block offset

If tag doesn’t match (= miss): old line is evicted and replaced
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Direct-Mapped Cache Simulation

4-bit addresses (address space size M=16 bytes) 
S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):
 0 [00002], 
 1 [00012],  
 7 [01112],  
 8 [10002],  
 0 [00002]

x
t=1 s=2 b=1

xx x

0

v Tag Block

0

0

0

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

0 M[0-1]Set 0

Set 1

Set 2

Set 3

(cold)

(cold)

(cold)
(conflict)
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

2 lines per set

S sets
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes (= hit)

block offset

tag
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes (= hit)

block offset

tag 54

short int (2 Bytes) is here

No match or not valid (= miss): 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …
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2-Way Set Associative Cache Simulation

4-bit addresses (M=16 bytes) 
S=2 sets, E=2 blocks/set, B=2 bytes/block 

Address trace (reads, one byte per read):
 0 [00002], 
 1 [00012],  
 7 [01112],  
 8 [10002],  
 0 [00002]

xx
t=2 s=1 b=1

x x

0

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
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What about writes?

 Multiple copies of data exist:
▪ L1, L2, L3, Main Memory, Disk

 What to do on a write-hit?
▪ Write-through (write immediately to memory)

▪ Write-back (defer write to memory until replacement of line)

▪ Each cache line needs a dirty bit (set if data differs from memory)

 What to do on a write-miss?
▪ Write-allocate (load into cache, update line in cache)

▪ Good if more writes to the location will follow

▪ No-write-allocate (writes straight to memory, does not load into cache)

 Typical

▪ Write-through + No-write-allocate

▪ Write-back + Write-allocate

0 1 2 B-1tagd

B = 2b bytesdirty bit

v

valid bit
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Why Index Using Middle Bits? 

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

t bits 0…01 100

Address of int:

find set

Standard Method: 
Middle bits indexing

t bits1…11 100

Address of int:

find set

Alternative Method:
High bits indexing
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Illustration of Indexing 
Approaches
 64-byte memory

▪ 6-bit addresses

 16 byte, direct-mapped cache

 Block size = 4. (Thus, 4 sets; why?)

 2 bits tag, 2 bits index, 2 bits offset

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx
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Middle Bits Indexing

 Addresses of form TTSSBB
▪ TT Tag bits

▪ SS Set index bits

▪ BB Offset bits

 Makes good use of spatial locality

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx
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High Bits Indexing

 Addresses of form SSTTBB
▪ SS Set index bits

▪ TT Tag bits

▪ BB Offset bits

 Program with high spatial locality 
would generate lots of conflicts

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx
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Intel Core i7 Cache Hierarchy

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB,  8-way, 
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way, 
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for 
all caches. 
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Example: Core i7 L1 Data Cache

B =
S =    , s = 
E =    , e = 
C = 

Block offset:  . bits
Set index: . bits
Tag: . bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x??

Set index:  0x??

Tag: 0x??

32 KB 8-way set associative
64 bytes/block
47 bit address range
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Example: Core i7 L1 Data Cache

B = 64
S = 64, s = 6
E = 8, e = 3
C = 64 x 64 x 8 = 32,768

Block offset:  6 bits
Set index: 6 bits
Tag: 35 bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x??

Set index:  0x??

Tag: 0x??

32 kB 8-way set associative
64 bytes/block
47 bit address range
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Example: Core i7 L1 Data Cache

B = 64
S = 64, s = 6
E = 8, e = 3
C = 64 x 64 x 8 = 32,768

Block offset:  6 bits
Set index: 6 bits
Tag: 35 bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x10

Set index:  0x0

Tag: 0x7f7262a1e

32 kB 8-way set associative
64 bytes/block
47 bit address range

0000 0001 0000
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Cache Performance Metrics

 Miss Rate
▪ Fraction of memory accesses not found in cache (misses / accesses)

= 1 – hit rate

▪ Typical numbers (as %):

▪ 3-10% for L1

▪ can be quite small (e.g., < 1%) for L2, depending on size, etc.

 Hit Time
▪ Time to deliver a cached block to the processor

▪ includes time to determine whether line is in cache

▪ Typical numbers:

▪ 4 clock cycle for L1

▪ 10 clock cycles for L2

 Miss Penalty
▪ Additional time required because of a miss

▪ typically 50-200 cycles for main memory (Trend: increasing!)
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How Bad Can a Few Cache Misses Be?

 Huge difference between a hit and a miss
▪ Could be 100x, if just L1 and main memory

 Would you believe 99% hits is twice as good as 97%?
▪ Consider this simplified example: 

       cache hit time of 1 cycle
       miss penalty of 100 cycles

▪ Average access time:

  97% hits:  1 cycle + 0.03 x 100 cycles = 4 cycles

  99% hits:  1 cycle + 0.01 x 100 cycles = 2 cycles

 This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

 Make the common case go fast
▪ Focus on the inner loops of the core functions

 Minimize the misses in the inner loops
▪ Repeated references to variables are good (temporal locality)

▪ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified 
through our understanding of cache memories
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Quiz Time!

Canvas Quiz:  Day 10 – Cache Memories
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Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality
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The Memory Mountain

 Read throughput (read bandwidth)
▪ Number of bytes read from memory per second (MB/s)

 Memory mountain: Measured read throughput as a 
function of spatial and temporal locality.
▪ Compact way to characterize memory system performance. 
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Memory Mountain Test Function
long data[MAXELEMS];  /* Global array to traverse */

/* test - Iterate over first "elems" elements of

 *        array "data" with stride of "stride“, 

 *        using 4x4 loop unrolling.                                                     

 */ 

int test(int elems, int stride) {

    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;

    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;

    long length = elems, limit = length - sx4;

    /* Combine 4 elements at a time */

    for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];

acc1 = acc1 + data[i+stride];

acc2 = acc2 + data[i+sx2];

acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */

    for (; i < length; i++) {

acc0 = acc0 + data[i];

}

    return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many 
combinations of elems 
and stride.

For each elems and 
stride:

1. Call test() once to 
warm up the caches.

2. Call test() again and 

measure the read 
throughput(MB/s)

mountain/mountain.c
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The Memory Mountain

128m

32m

8m
2m

512k
128k

32k
0
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Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes 

of spatial 

locality

Ridges 

of temporal 

locality

L1

Mem

L2

L3

Aggressive 

prefetching
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Closer Look at Stride Effects

SizeStride

8 elems per 
cache block

128K

0

5000

10000

15000

20000

25000

30000

35000

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

M
B

/s
ec

Throughput for size = 128K

Measured

Miss rate = stride/8

Miss rate = 1.0

stride
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Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality
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Matrix Multiplication Example

 Description:
▪ Multiply N x N matrices

▪ Matrix elements are 
doubles (8 bytes)

▪ O(N3) total operations

▪ N reads per source 
element

▪ N values summed per 
destination

▪ but may be able to 
hold in register

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++) 

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

} 

Variable sum
held in register

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

 Assume:
▪ Block size = 32B (big enough for four doubles)

▪ Matrix dimension (N) is very large

▪ Approximate 1/N as 0.0

▪ Cache is not even big enough to hold multiple rows

 Analysis Method:
▪ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Layout of C Arrays in Memory (review)

 C arrays allocated in row-major order
▪ each row in contiguous memory locations

 Stepping through columns in one row:
▪ for (i = 0; i < N; i++)

sum += a[0][i];

▪ accesses successive elements

▪ if block size (B) > sizeof(aij) bytes, exploit spatial locality

▪ miss rate = sizeof(aij) / B

 Stepping through rows in one column:
▪ for (i = 0; i < n; i++)

sum += a[i][0];

▪ accesses distant elements

▪ no spatial locality!

▪ miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++) 

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

} 

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
  A B C
  0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {

  for (i=0; i<n; i++) {

    sum = 0.0;

    for (k=0; k<n; k++)

      sum += a[i][k] * b[k][j];

    c[i][j] = sum

  }

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
  A B C
  0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)Same analysis as ijk
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Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

  for (i=0; i<n; i++) {

    r = a[i][k];

    for (j=0; j<n; j++)

      c[i][j] += r * b[k][j];   

  }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
  A B C
  0.0 

matmult/mm.c

Block size = 32B (four doubles)

0.25 0.25
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Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

  for (k=0; k<n; k++) {

    r = b[k][j];

    for (i=0; i<n; i++)

      c[i][j] += a[i][k] * r;

  }

} 

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
  A B C
   0.0 

matmult/mm.c

Block size = 32B (four doubles)

1.0 1.0
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• avg misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• avg misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {

  for (j=0; j<n; j++) {

   sum = 0.0;

   for (k=0; k<n; k++) 

     sum += a[i][k] * b[k][j];

   c[i][j] = sum;

 }

} 

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

  r = a[i][k];

  for (j=0; j<n; j++)

   c[i][j] += r * b[k][j];   

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

   r = b[k][j];

   for (i=0; i<n; i++)

    c[i][j] += a[i][k] * r;

 }

}
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Core i7 Matrix Multiply Performance
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Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality
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Example: Matrix Multiplication

a b

i

j

x
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

    int i, j, k;

    for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

             for (k = 0; k < n; k++)

          c[i*n + j] += a[i*n + k] * b[k*n + j];

}
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Cache Miss Analysis
 Assume: 

▪ Matrix elements are doubles

▪ Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 First iteration:
▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

x=

n

x=

8 wide
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Cache Miss Analysis
 Assume: 

▪ Matrix elements are doubles

▪ Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

 Total misses:
▪ 9n/8 n2 = (9/8) n3 

n

x=

8 wide
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

    int i, j, k;

    for (i = 0; i < n; i+=L)

 for (j = 0; j < n; j+=L)

             for (k = 0; k < n; k+=L)

   /* L x L mini matrix multiplications */

                  for (i1 = i; i1 < i+L; i1++)

                      for (j1 = j; j1 < j+L; j1++)

                          for (k1 = k; k1 < k+L; k1++)

                       c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size L x L

matmult/bmm.c
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Cache Miss Analysis
 Assume: 

▪ Cache line = 8 doubles.  Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks       fit into cache: 3L2 < C

 First (block) iteration:
▪ Misses per block: L2/8

▪ Blocks per Iteration: 2n/L

     (omitting matrix c)

▪ Misses per Iteration:

     2n/L x L2/8 = nL/4

▪ Afterwards in cache
(schematic) x=

x=

Block size L x L

n/L blocks
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Cache Miss Analysis
 Assume: 

▪ Cache line = 8 doubles.  Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks       fit into cache: 3L2 < C

 Second (block) iteration:
▪ Same misses as

     first iteration

▪ 2n/L x L2/8 = nL/4

 Total misses:

▪ nL/4 misses per iteration  x  (n/L)2 iterations = n3/(4L) misses

x=

Block size L x L

n/L blocks
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Blocking Summary

 No blocking: (9/8) n3  misses

 Blocking:  (1/(4L)) n3  misses

 Use largest block size L, such that L satisfies 3L2 < C
▪ Fit three blocks in cache!  Two input, one output.

 Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly
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Cache Summary 

 Cache memories can have significant performance impact

 You can write your programs to exploit this!
▪ Focus on the inner loops, where bulk of computations and memory 

accesses occur. 

▪ Try to maximize spatial locality by reading data objects sequentially 
with stride 1.

▪ Try to maximize temporal locality by using a data object as often as 
possible once it’s read from memory. 
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Supplemental slides
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Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

  for (k=0; k<n; k++) {

    r = a[i][k];

    for (j=0; j<n; j++)

      c[i][j] += r * b[k][j];

  }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
  A B C
  0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

  for (j=0; j<n; j++) {

    r = b[k][j];

    for (i=0; i<n; i++)

      c[i][j] += a[i][k] * r;

  }

} 

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
  A B C
  1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)



Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: Stack and instruction pointers

 The stack pointer (%rsp) 
points to the top of the stack

 The instruction pointer (%rip) 
points to the next instruction 
to be executed

 They are independent

▪ But linked by call and ret 
instructions

Stack

Text

Data

Heap

Shared
Libraries

rsp

rip
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Recap: stack operations 

 push %rax =

more stuff

rsp
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Recap: stack operations 

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)
more stuff

rax

rsp
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Recap: stack operations 

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

more stuff

rax

rsp
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Recap: stack operations 

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

more stuff

rax

rip

rsp
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Recap: stack operations 

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

 ret =

more stuff

rax

rip

rsp
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Recap: stack operations 

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

 ret =

▪ mov (%rsp), %rip

▪ add %rsp, 8

more stuff

rax

rsp
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Recap: stack operations 

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

 ret =

▪ mov (%rsp), %rip

▪ add %rsp, 8

 pop %rax =

more stuff

rax

rsp
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Recap: stack operations 

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

 ret =

▪ mov (%rsp), %rip

▪ add %rsp, 8

 pop %rax =

▪ mov (%rsp), %rax

▪ add %rsp, 8

more stuff

rsp
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