
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Memories

18-213/18-613: Introduction to Computer Systems
10th Lecture, September 26th, 2024

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminder: AIV Policy
 No unauthorized use of information

▪ Borrowing code: by copying, retyping, looking at a file

▪ Describing: verbal description of code from one person to another

▪ Searching the Web for solutions

▪ Copying code from a previous course or online solution

▪ Reusing your code from a previous semester (here or elsewhere)

 No unauthorized supplying of information
▪ Providing copy: Giving a copy of a file to someone

▪ Providing access:

▪ Putting material in unprotected directory

▪ Putting material in unprotected code repository (e.g., Github)

 No collaborations beyond high-level, strategic advice
▪ Anything more than block diagram or a few words

 Start early. Make frequent github commits. Plan for stumbling blocks. Use available help. Don’t panic: Far better to turn in 25% correct solution than get an AIV.

Start early. Make frequent github commits. Plan for stumbling blocks. Use available help.

Don’t panic: Far better to turn in 25% correct solution than get an AIV.

http://www.cs.cmu.edu/~18213/academicintegrity.html

http://www.cs.cmu.edu/~18213/academicintegrity.html

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15213-f18/www/academicintegrity.html

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Cache memory organization and operation CSAPP 6.4-6.5

 Performance impact of caches

▪ The memory mountain CSAPP 6.6.1

▪ Rearranging loops to improve spatial locality CSAPP 6.6.2

▪ Using blocking to improve temporal locality CSAPP 6.6.3

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Working Set, Locality, and Caches

 Working Set: The set of data a program is currently “working on”
▪ Definition of “currently” depends on context, e.g., in this loop

▪ Includes accesses to data and instructions

 Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently

▪ Nearby addresses: Spatial Locality

▪ Equal addresses: Temporal locality

 Caches take advantage of temporal locality by storing recently
used data, and spatial locality by copying data in block-sized
transfer units
▪ Locality reduces working set sizes

▪ Caches are most effective when the working set fits in the cache

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: 3 Types of Cache Misses

 Cold (compulsory) miss

▪ Cold misses occur because the cache starts empty and this is the first
reference to the block.

 Capacity miss
▪ Occurs when the set of active cache blocks (working set) is larger than

the cache.

 Conflict miss
▪ Occurs when the cache is large enough, but too many data objects all

map (by the placement policy) to the same limited set of blocks

▪ E.g., if the placement policy maps both 0 and 8 to the same block,
then referencing 0, 8, 0, 8, 0, 8, ... would miss every time.

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CPU Cache Memories

 Cache memories are small, fast SRAM-based memories
managed automatically in hardware

▪ Hold frequently accessed blocks of main memory

 CPU looks first for data in cache

 Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache
memory

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What it Really Looks Like

Bus interface

ALU

Register file

CPU chip

Cache
memory

Core i7-3960XAMD FX 8150Nehalem

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What it Really Looks Like (Cont.)

Intel Alder Lake (2021)
8 P-cores + 8 E-cores

L1 caches per P-core: 32KB Instruction & 48KB Data
L1 caches per E-core: 64KB Instruction & 32KB Data
L2 caches: 1.25MB per P-core, 2MB per four E-cores
L3 cache: 30MB shared among all cores

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size
 = S x E x B data bytes

valid bit

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid? +

block offset

tag

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes (= hit)valid? +

int (4 Bytes) is here

block offset

If tag doesn’t match (= miss): old line is evicted and replaced

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Direct-Mapped Cache Simulation

4-bit addresses (address space size M=16 bytes)
S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0

v Tag Block

0

0

0

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

0 M[0-1]Set 0

Set 1

Set 2

Set 3

(cold)

(cold)

(cold)
(conflict)

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

2 lines per set

S sets

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes (= hit)

block offset

tag

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size B=8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes (= hit)

block offset

tag 54

short int (2 Bytes) is here

No match or not valid (= miss):
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

2-Way Set Associative Cache Simulation

4-bit addresses (M=16 bytes)
S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What about writes?

 Multiple copies of data exist:
▪ L1, L2, L3, Main Memory, Disk

 What to do on a write-hit?
▪ Write-through (write immediately to memory)

▪ Write-back (defer write to memory until replacement of line)

▪ Each cache line needs a dirty bit (set if data differs from memory)

 What to do on a write-miss?
▪ Write-allocate (load into cache, update line in cache)

▪ Good if more writes to the location will follow

▪ No-write-allocate (writes straight to memory, does not load into cache)

 Typical

▪ Write-through + No-write-allocate

▪ Write-back + Write-allocate

0 1 2 B-1tagd

B = 2b bytesdirty bit

v

valid bit

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Index Using Middle Bits?

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

t bits 0…01 100

Address of int:

find set

Standard Method:
Middle bits indexing

t bits1…11 100

Address of int:

find set

Alternative Method:
High bits indexing

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Illustration of Indexing
Approaches
 64-byte memory

▪ 6-bit addresses

 16 byte, direct-mapped cache

 Block size = 4. (Thus, 4 sets; why?)

 2 bits tag, 2 bits index, 2 bits offset

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Middle Bits Indexing

 Addresses of form TTSSBB
▪ TT Tag bits

▪ SS Set index bits

▪ BB Offset bits

 Makes good use of spatial locality

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

High Bits Indexing

 Addresses of form SSTTBB
▪ SS Set index bits

▪ TT Tag bits

▪ BB Offset bits

 Program with high spatial locality
would generate lots of conflicts

Set 0

Set 1

Set 2

Set 3

1111xx

1110xx

1101xx

1100xx

1011xx

1010xx

1001xx

1000xx

0111xx

0110xx

0101xx

0100xx

0011xx

0010xx

0001xx

0000xx

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
 256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Core i7 L1 Data Cache

B =
S = , s =
E = , e =
C =

Block offset: . bits
Set index: . bits
Tag: . bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x??

Set index: 0x??

Tag: 0x??

32 KB 8-way set associative
64 bytes/block
47 bit address range

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Core i7 L1 Data Cache

B = 64
S = 64, s = 6
E = 8, e = 3
C = 64 x 64 x 8 = 32,768

Block offset: 6 bits
Set index: 6 bits
Tag: 35 bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x??

Set index: 0x??

Tag: 0x??

32 kB 8-way set associative
64 bytes/block
47 bit address range

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Core i7 L1 Data Cache

B = 64
S = 64, s = 6
E = 8, e = 3
C = 64 x 64 x 8 = 32,768

Block offset: 6 bits
Set index: 6 bits
Tag: 35 bits

Stack Address:
0x00007f7262a1e010

Block offset: 0x10

Set index: 0x0

Tag: 0x7f7262a1e

32 kB 8-way set associative
64 bytes/block
47 bit address range

0000 0001 0000

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Performance Metrics

 Miss Rate
▪ Fraction of memory accesses not found in cache (misses / accesses)

= 1 – hit rate

▪ Typical numbers (as %):

▪ 3-10% for L1

▪ can be quite small (e.g., < 1%) for L2, depending on size, etc.

 Hit Time
▪ Time to deliver a cached block to the processor

▪ includes time to determine whether line is in cache

▪ Typical numbers:

▪ 4 clock cycle for L1

▪ 10 clock cycles for L2

 Miss Penalty
▪ Additional time required because of a miss

▪ typically 50-200 cycles for main memory (Trend: increasing!)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Bad Can a Few Cache Misses Be?

 Huge difference between a hit and a miss
▪ Could be 100x, if just L1 and main memory

 Would you believe 99% hits is twice as good as 97%?
▪ Consider this simplified example:

 cache hit time of 1 cycle
 miss penalty of 100 cycles

▪ Average access time:

 97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles

 99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

 This is why “miss rate” is used instead of “hit rate”

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Cache Friendly Code

 Make the common case go fast
▪ Focus on the inner loops of the core functions

 Minimize the misses in the inner loops
▪ Repeated references to variables are good (temporal locality)

▪ Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Canvas Quiz: Day 10 – Cache Memories

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Mountain

 Read throughput (read bandwidth)
▪ Number of bytes read from memory per second (MB/s)

 Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
▪ Compact way to characterize memory system performance.

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Mountain Test Function
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

 * array "data" with stride of "stride“,

 * using 4x4 loop unrolling.

 */

int test(int elems, int stride) {

 long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;

 long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;

 long length = elems, limit = length - sx4;

 /* Combine 4 elements at a time */

 for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];

acc1 = acc1 + data[i+stride];

acc2 = acc2 + data[i+sx2];

acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */

 for (; i < length; i++) {

acc0 = acc0 + data[i];

}

 return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many
combinations of elems
and stride.

For each elems and
stride:

1. Call test() once to
warm up the caches.

2. Call test() again and

measure the read
throughput(MB/s)

mountain/mountain.c

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Mountain

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes

of spatial

locality

Ridges

of temporal

locality

L1

Mem

L2

L3

Aggressive

prefetching

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closer Look at Stride Effects

SizeStride

8 elems per
cache block

128K

0

5000

10000

15000

20000

25000

30000

35000

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

M
B

/s
ec

Throughput for size = 128K

Measured

Miss rate = stride/8

Miss rate = 1.0

stride

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication Example

 Description:
▪ Multiply N x N matrices

▪ Matrix elements are
doubles (8 bytes)

▪ O(N3) total operations

▪ N reads per source
element

▪ N values summed per
destination

▪ but may be able to
hold in register

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

Variable sum
held in register

matmult/mm.c

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Miss Rate Analysis for Matrix Multiply

 Assume:
▪ Block size = 32B (big enough for four doubles)

▪ Matrix dimension (N) is very large

▪ Approximate 1/N as 0.0

▪ Cache is not even big enough to hold multiple rows

 Analysis Method:
▪ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Layout of C Arrays in Memory (review)

 C arrays allocated in row-major order
▪ each row in contiguous memory locations

 Stepping through columns in one row:
▪ for (i = 0; i < N; i++)

sum += a[0][i];

▪ accesses successive elements

▪ if block size (B) > sizeof(aij) bytes, exploit spatial locality

▪ miss rate = sizeof(aij) / B

 Stepping through rows in one column:
▪ for (i = 0; i < n; i++)

sum += a[i][0];

▪ accesses distant elements

▪ no spatial locality!

▪ miss rate = 1 (i.e. 100%)

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
 A B C
 0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {

 for (i=0; i<n; i++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum

 }

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)Same analysis as ijk

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
 A B C
 0.0

matmult/mm.c

Block size = 32B (four doubles)

0.25 0.25

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
 A B C
 0.0

matmult/mm.c

Block size = 32B (four doubles)

1.0 1.0

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• avg misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• avg misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki

kji

ijk

jik

kij

ikj ijk / jik (1.25)

jki / kji (2.0)

kij / ikj (0.5)

Cycles per inner loop iteration

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication

a b

i

j

x
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (k = 0; k < n; k++)

 c[i*n + j] += a[i*n + k] * b[k*n + j];

}

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Matrix elements are doubles

▪ Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 First iteration:
▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

x=

n

x=

8 wide

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Matrix elements are doubles

▪ Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

 Total misses:
▪ 9n/8 n2 = (9/8) n3

n

x=

8 wide

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=L)

 for (j = 0; j < n; j+=L)

 for (k = 0; k < n; k+=L)

 /* L x L mini matrix multiplications */

 for (i1 = i; i1 < i+L; i1++)

 for (j1 = j; j1 < j+L; j1++)

 for (k1 = k; k1 < k+L; k1++)

 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size L x L

matmult/bmm.c

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Cache line = 8 doubles. Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3L2 < C

 First (block) iteration:
▪ Misses per block: L2/8

▪ Blocks per Iteration: 2n/L

 (omitting matrix c)

▪ Misses per Iteration:

 2n/L x L2/8 = nL/4

▪ Afterwards in cache
(schematic) x=

x=

Block size L x L

n/L blocks

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Cache line = 8 doubles. Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3L2 < C

 Second (block) iteration:
▪ Same misses as

 first iteration

▪ 2n/L x L2/8 = nL/4

 Total misses:

▪ nL/4 misses per iteration x (n/L)2 iterations = n3/(4L) misses

x=

Block size L x L

n/L blocks

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Summary

 No blocking: (9/8) n3 misses

 Blocking: (1/(4L)) n3 misses

 Use largest block size L, such that L satisfies 3L2 < C
▪ Fit three blocks in cache! Two input, one output.

 Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Summary

 Cache memories can have significant performance impact

 You can write your programs to exploit this!
▪ Focus on the inner loops, where bulk of computations and memory

accesses occur.

▪ Try to maximize spatial locality by reading data objects sequentially
with stride 1.

▪ Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Supplemental slides

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

128m

32m
8m

2m
512k

128k
32k

0

4000

8000

12000

16000

20000

24000

28000

32000

s1
s3

s5
s7

s9

s11
Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

The Memory Mountain

Slopes

of spatial

locality

Ridges

of temporal

locality

L1

Mem

L2

L3

Aggressive

prefetching

Core i5 Haswell
3.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

5000

10000

15000

20000

25000

30000

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Working set size (bytes)

Cache Capacity Effects from
Memory Mountain

Core i7 Haswell
3.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slice through
memory
mountain with
stride=8

L1L2L3
Main

Memory

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

5000

10000

15000

20000

25000

30000

35000

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

M
B

/s
ec

Throughput for size = 128K

Measured

Model

Modeling Block Size Effects
from Memory Mountain

Core i7 Haswell
2.26 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Throughput =
106

8.0s+ 24.3

Stride s

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

s1
s3

s5
s7

s9

s11
Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

No

prefetching

2008 Memory Mountain
Core 2 Duo
2.4 GHz
32 KB L1 d-cache
6MB L2 cache
64 B block size

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

 for (k=0; k<n; k++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

 for (j=0; j<n; j++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: Stack and instruction pointers

 The stack pointer (%rsp)
points to the top of the stack

 The instruction pointer (%rip)
points to the next instruction
to be executed

 They are independent

▪ But linked by call and ret
instructions

Stack

Text

Data

Heap

Shared
Libraries

rsp

rip

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: stack operations

 push %rax =

more stuff

rsp

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: stack operations

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)
more stuff

rax

rsp

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: stack operations

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

more stuff

rax

rsp

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: stack operations

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

more stuff

rax

rip

rsp

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: stack operations

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

 ret =

more stuff

rax

rip

rsp

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: stack operations

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

 ret =

▪ mov (%rsp), %rip

▪ add %rsp, 8

more stuff

rax

rsp

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: stack operations

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

 ret =

▪ mov (%rsp), %rip

▪ add %rsp, 8

 pop %rax =

more stuff

rax

rsp

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap: stack operations

 push %rax =

▪ sub %rsp, 8

▪ mov %rax, (%rsp)

 call func =

▪ sub %rsp, 8

▪ mov %rip, (%rsp)

▪ jmp func

 ret =

▪ mov (%rsp), %rip

▪ add %rsp, 8

 pop %rax =

▪ mov (%rsp), %rax

▪ add %rsp, 8

more stuff

rsp

	Slide 1
	Slide 2: Cache Memories 18-213/18-613: Introduction to Computer Systems 10th Lecture, September 26th, 2024
	Slide 3: Reminder: AIV Policy
	Slide 4: Today
	Slide 5: Recall: General Cache Concepts
	Slide 6: General Cache Concepts: Hit
	Slide 7: General Cache Concepts: Miss
	Slide 8: Working Set, Locality, and Caches
	Slide 9: Recall: 3 Types of Cache Misses
	Slide 10: CPU Cache Memories
	Slide 11: What it Really Looks Like
	Slide 12: What it Really Looks Like (Cont.)
	Slide 13: General Cache Organization (S, E, B)
	Slide 14: Cache Read
	Slide 15: Example: Direct Mapped Cache (E = 1)
	Slide 16: Example: Direct Mapped Cache (E = 1)
	Slide 17: Example: Direct Mapped Cache (E = 1)
	Slide 18: Direct-Mapped Cache Simulation
	Slide 19: E-way Set Associative Cache (Here: E = 2)
	Slide 20: E-way Set Associative Cache (Here: E = 2)
	Slide 21: E-way Set Associative Cache (Here: E = 2)
	Slide 22: 2-Way Set Associative Cache Simulation
	Slide 23: What about writes?
	Slide 24: Why Index Using Middle Bits?
	Slide 25: Illustration of Indexing Approaches
	Slide 26: Middle Bits Indexing
	Slide 27: High Bits Indexing
	Slide 28: Intel Core i7 Cache Hierarchy
	Slide 29: Example: Core i7 L1 Data Cache
	Slide 30: Example: Core i7 L1 Data Cache
	Slide 31: Example: Core i7 L1 Data Cache
	Slide 32: Cache Performance Metrics
	Slide 33: How Bad Can a Few Cache Misses Be?
	Slide 34: Writing Cache Friendly Code
	Slide 35: Quiz Time!
	Slide 36: Today
	Slide 37: The Memory Mountain
	Slide 38: Memory Mountain Test Function
	Slide 39: The Memory Mountain
	Slide 40: Closer Look at Stride Effects
	Slide 41: Today
	Slide 42: Matrix Multiplication Example
	Slide 43: Miss Rate Analysis for Matrix Multiply
	Slide 44: Layout of C Arrays in Memory (review)
	Slide 45: Matrix Multiplication (ijk)
	Slide 46: Matrix Multiplication (jik)
	Slide 47: Matrix Multiplication (kij)
	Slide 48: Matrix Multiplication (jki)
	Slide 49: Summary of Matrix Multiplication
	Slide 50: Core i7 Matrix Multiply Performance
	Slide 51: Today
	Slide 52: Example: Matrix Multiplication
	Slide 53: Cache Miss Analysis
	Slide 54: Cache Miss Analysis
	Slide 55: Blocked Matrix Multiplication
	Slide 56: Cache Miss Analysis
	Slide 57: Cache Miss Analysis
	Slide 58: Blocking Summary
	Slide 59: Cache Summary
	Slide 60: Supplemental slides
	Slide 61: The Memory Mountain
	Slide 62: Cache Capacity Effects from Memory Mountain
	Slide 63: Modeling Block Size Effects from Memory Mountain
	Slide 64: 2008 Memory Mountain
	Slide 65: Matrix Multiplication (ikj)
	Slide 66: Matrix Multiplication (kji)
	Slide 67: Recap: Stack and instruction pointers
	Slide 68: Recap: stack operations
	Slide 69: Recap: stack operations
	Slide 70: Recap: stack operations
	Slide 71: Recap: stack operations
	Slide 72: Recap: stack operations
	Slide 73: Recap: stack operations
	Slide 74: Recap: stack operations
	Slide 75: Recap: stack operations

