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Announcements

 “Low-stakes take-home midterm” 
goes out on Monday evening (after small groups finish)
▪ 80 minutes self-timed.  Covers through virtual memort

▪ Questions similar to homeworks, but only one attempt. 

▪ Tests what you’ve learned, as in a real midterm (and as in the Final).

▪ Low-stakes: Only 4% of grade (could even be  “half dropped”).
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Caching Wrap-Up

 Quick review

 Miss-Rate Analysis

 Blocked Operations
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Matrix Multiplication Example

 Description:
▪ Multiply N x N matrices

▪ Matrix elements are 
doubles (8 bytes)

▪ O(N3) total operations

▪ N reads per source 
element

▪ N values summed per 
destination

▪ but may be able to 
hold in register

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++) 

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

} 

Variable sum
held in register

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

 Assume:
▪ Block size = 64B (big enough for eight doubles)

▪ Matrix dimension (N) is very large

▪ Approximate 1/N as 0.0

▪ Cache is not even big enough to hold multiple rows

 Analysis Method:
▪ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x



Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {

  for (j=0; j<n; j++) {

    sum = 0.0;

    for (k=0; k<n; k++) 

      sum += a[i][k] * b[k][j];

    c[i][j] = sum;

  }

} 

Inner loop:

Column-wiseRow-wise Fixed

Miss rate for inner loop iterations:
  A B C
    0.0

matmult/mm.c

Block size = 64B (eight doubles)

Avg misses/iter = 1.125
0.125 1.0

A B C

(i,*)

(*,j)
(i,j)
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Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

  for (i=0; i<n; i++) {

    r = a[i][k];

    for (j=0; j<n; j++)

      c[i][j] += r * b[k][j];   

  }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
  A B C
  0.0 

matmult/mm.c

Block size = 64B (eight doubles)

0.125 0.125
Avg misses/iter = 0.25
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Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

  for (k=0; k<n; k++) {

    r = b[k][j];

    for (i=0; i<n; i++)

      c[i][j] += a[i][k] * r;

  }

} 

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-wise Column-wiseFixed

Miss rate for inner loop iterations:
  A B C
   0.0 

matmult/mm.c

Block size = 64B (eight doubles)

1.0 1.0
Avg misses/iter = 2.0
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• avg misses/iter = 1.125

kij (& ikj): 
• 2 loads, 1 store
• avg misses/iter = 0.25

jki (& kji): 
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {

  for (j=0; j<n; j++) {

   sum = 0.0;

   for (k=0; k<n; k++) 

     sum += a[i][k] * b[k][j];

   c[i][j] = sum;

 }

} 

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

  r = a[i][k];

  for (j=0; j<n; j++)

   c[i][j] += r * b[k][j];   

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

   r = b[k][j];

   for (i=0; i<n; i++)

    c[i][j] += a[i][k] * r;

 }

}
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Core i7 Matrix Multiply Performance
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Matrix Multiplication Cache Miss Analysis

 Assume: 
▪ Matrix elements are doubles. Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 First iteration (ijk): 

▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

x= n

x=

8 wide

A

(i,*)

B

(*,j)

C

(i,j)
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Cache Miss Analysis (cont)
 Assume: 

▪ Matrix elements are doubles. Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

 Total misses:
▪ (9n/8) n2 = (9/8) n3 

x=

8 wide

n

A

(i,*)

B

(*,j)

C

(i,j)
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

    int i, j, k;

    for (i = 0; i < n; i+=L)

 for (j = 0; j < n; j+=L)

             for (k = 0; k < n; k+=L)

   /* L x L mini matrix multiplications */

                  for (i1 = i; i1 < i+L; i1++)

                      for (j1 = j; j1 < j+L; j1++)

                          for (k1 = k; k1 < k+L; k1++)

                       c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size L x L

matmult/bmm.c
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Cache Miss Analysis
 Assume: 

▪ Cache line = 8 doubles.  Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks       fit into cache: 3L2 < C

 First (block) iteration:
▪ Misses per block: L2/8

▪ Blocks per Iteration: 2n/L

     (omitting matrix c)

▪ Misses per Iteration:

     2n/L x L2/8 = nL/4

▪ Afterwards in cache
(schematic) x=

x=

Block size L x L

n/L blocks



Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume: 

▪ Cache line = 8 doubles.  Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks       fit into cache: 3L2 < C

 Second (block) iteration:
▪ Same misses as

     first iteration

▪ 2n/L x L2/8 = nL/4

 Total misses:
▪ nL/4 misses per iteration  x  (n/L)2 iterations = n3/(4L) misses

x=

Block size L x L

n/L blocks
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Blocking Summary

 No blocking (ijk): (9/8) n3  misses

 Blocking:  (1/(4L)) n3  misses

 Use largest block size L, such that L satisfies 3L2 < C
▪ Fit three blocks in cache!  Two input, one output.

 Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly
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Hmmm, How Does This Work?!  
Process 1 Process 2 Process n

Solution: Virtual Memory (today and next lecture)
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Virtual Memory  

 Address spaces     CSAPP 9.1-9.2

 VM as a tool for caching    CSAPP 9.3

 VM as a tool for memory management  CSAPP 9.4

 VM as a tool for memory protection  CSAPP 9.5

 Address translation    CSAPP 9.6
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Blank Slide for Intro Sketching
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A System Using Physical Addressing

 Used in “simple” systems like embedded microcontrollers in 
devices like elevators and digital picture frames
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Data word
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A System Using Virtual Addressing

 Used in all modern servers, laptops, and smart phones

 One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100
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Address Spaces

 Linear address space: Ordered set of contiguous non-negative integer 
addresses:
  {0, 1, 2, 3 … }

 Virtual address space: Set of N = 2n virtual addresses
  {0, 1, 2, 3, …, N-1}

 Physical address space: Set of M = 2m physical addresses
  {0, 1, 2, 3, …, M-1}
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Why Virtual Memory (VM)?

 Uses main memory efficiently
▪ Use DRAM as a cache for parts of a virtual address space

 Simplifies memory management
▪ Each process gets the same uniform linear address space

 Isolates address spaces
▪ One process can’t interfere with another’s memory 

▪ User program cannot access privileged kernel information and code
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Today  

 Address spaces

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation
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VM as a Tool for Caching

 Conceptually, virtual memory is an array of N contiguous 
bytes stored on disk. 

 The contents of the array on disk are cached in physical 
memory (DRAM cache)
▪ These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty
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Uncached
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Virtual memory

Unallocated
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Unallocated
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0

Virtual pages (VPs) 
stored on disk

Physical pages (PPs) 
cached in DRAM
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DRAM Cache Organization

 DRAM cache organization driven by the enormous miss penalty
▪ DRAM is about 10x slower than SRAM

▪ Disk is about 10,000x slower than DRAM

▪ Time to load block from disk > 1ms (> 1 million clock cycles)

▪ CPU can do a lot of computation during that time

 Consequences
▪ Large page (block) size: typically 4 KB

▪ Linux “huge pages” are 2 MB (default) to 1 GB

▪ Fully associative.  Why?

▪ Any VP can be placed in any PP

▪ Requires a “large” mapping function – different from cache memories

▪ Highly sophisticated, expensive replacement algorithms.  Why?

▪ Too complicated and open-ended to be implemented in hardware

▪ Write-back rather than write-through.  Why?



Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enabling Data Structure: Page Table

 A page table is an array of page table entries (PTEs) that 
maps virtual pages to physical pages. 
▪ Per-process kernel data structure in DRAM
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Page Hit

 Page hit: reference to VM word that is in physical memory 
(DRAM cache hit)
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Page Fault

 Page fault: reference to VM word that is not in physical 
memory (DRAM cache miss)
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Triggering a Page Fault
 User writes to memory location

 That portion (page) of user’s memory 
is currently on disk

 MMU triggers page fault exception
▪ (More details in later lecture)

▪ Raise privilege level to supervisor mode

▪ Causes procedure call to software page fault handler

int a[1000];

main ()

{

    a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl   $0xd,0x8049d10

User code Kernel code

Exception: page fault

Execute page fault 
handler

movl
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Handling Page Fault
 Page miss causes page fault (an exception)

null
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Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)
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Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!
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Key point: Waiting until the miss to copy the page to 
DRAM is known as demand paging
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Completing page fault
 Page fault handler executes return from 

interrupt (iret) instruction
▪ Like ret instruction, but also restores privilege level

▪ Return to instruction that caused fault

▪ But, this time there is no page fault

int a[1000];

main ()

{

    a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl   $0xd,0x8049d10

User code Kernel code

Exception: page fault

Copy page from 
disk to memory

Return and 
reexecute movl

movl
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Allocating Pages

 Allocating a new page (VP 5) of virtual memory.
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Allocating Pages

 Allocating a new page (VP 5) of virtual memory.

 Subsequent miss will bring it into memory
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Locality to the Rescue Again!

 Virtual memory seems terribly inefficient, but it works 
because of locality. 

 At any point in time, programs tend to access a set of active 
virtual pages called the working set
▪ Programs with better temporal locality will have smaller working sets

 If (working set size < main memory size) 
▪ Good performance for one process (after cold misses)

 If (working set size > main memory size ) 
▪ Thrashing: Performance meltdown where pages are swapped (copied) 

in and out continuously

▪ If multiple processes run at the same time, thrashing occurs if
their total working set size > main memory size
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Today  

 Address spaces

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation
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 Key idea: each process has its own virtual address space
▪ It can view memory as a simple linear array

▪ Mapping function scatters addresses through physical memory

▪ Well-chosen mappings can improve locality

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation

VM as a Tool for Memory Management
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 Simplifying memory allocation
▪ Each virtual page can be mapped to any physical page

▪ A virtual page can be stored in different physical pages at different times

▪ Can allocate the same virtual addresses on the heap for multiple processes
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Process 1:
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Address 
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VM as a Tool for Memory Management
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 Sharing code and data among processes
▪ Map virtual pages to the same physical page (here: PP 6)
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Simplifying Linking and Loading

 Linking 
▪ Each program has similar virtual 

address space

▪ Code, data, and heap always start 
at the same addresses.

 Loading 
▪ execve allocates virtual pages 

for .text and .data sections & 
creates PTEs marked as invalid

▪ The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system

 Discussed later in lecture
   on Linking and Loading

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp 
(stack 
pointer)
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Loaded 
from 
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file
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Today  

 Address spaces

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation
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VM as a Tool for Memory Protection
 Extend page table entries (PTEs) with permission bits
 MMU checks these bits on each access
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Today  

 Address spaces

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation
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VM Address Translation

 Virtual Address Space
▪ V = {0, 1, …, N–1}

 Physical Address Space
▪ P = {0, 1, …, M–1}

 Address Translation

▪ MAP:  V →  P  U  {}

▪ For virtual address a:

▪ MAP(a)  =  a’  if data at virtual address a is at physical address a’ in P

▪ MAP(a)  =  if data at virtual address a is not in physical memory

– Either invalid or stored on disk
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Summary of Address Translation Symbols

 Basic Parameters
▪ N = 2n : Number of addresses in virtual address space

▪ M = 2m : Number of addresses in physical address space

▪ P = 2p : Page size (bytes)

 Components of the virtual address (VA)
▪ VPO: Virtual page offset 

▪ VPN: Virtual page number 

 Components of the physical address (PA)
▪ PPO: Physical page offset (same as VPO)

▪ PPN: Physical page number
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Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table 
base register (PTBR)

(CR3 in x86)

Page table 

Physical page table 
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1
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Address Translation: Page Hit

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5
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Address Translation: Page Fault

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim to page out (if dirty, writes pages to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7
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Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA 
hit

PA 
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Speeding up Translation with a TLB

 Page table entries (PTEs) are cached in L1 like any other 
memory word

▪ PTEs may be evicted by other data references

▪ PTE hit still requires a small L1 delay

 Solution: Translation Lookaside Buffer (TLB)
▪ Small set-associative hardware cache in MMU

▪ Maps virtual page numbers to  physical page numbers

▪ Contains complete page table entries for small number of pages
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Summary of Address Translation Symbols

 Basic Parameters
▪ N = 2n : Number of addresses in virtual address space

▪ M = 2m : Number of addresses in physical address space

▪ P = 2p : Page size (bytes)

 Components of the virtual address (VA)
▪ TLBI: TLB index

▪ TLBT: TLB tag

▪ VPO: Virtual page offset 

▪ VPN: Virtual page number 

 Components of the physical address (PA)
▪ PPO: Physical page offset (same as VPO)

▪ PPN: Physical page number
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Accessing the TLB

 MMU uses the VPN portion of the virtual address to 
access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag 
of line within set
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TLB Hit

MMU
Cache/
Memory

CPU

CPU Chip

VA

1

PA

4

Data

5

A TLB hit eliminates a cache/memory access

TLB

2

VPN

PTE

3
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TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional cache/memory access (the PTE)
Fortunately, TLB misses are rare. Why?
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Multi-Level Page Tables

 Suppose:
▪ 4KB (212) page size, 48-bit address space, 8-byte PTE 

 Problem:
▪ Would need a 512 GB page table!

▪ 248 * 2-12  * 23 = 239 bytes

 Common solution: Multi-level page table

 Example: 2-level page table
▪ Level 1 table: each PTE points to a page table (always 

memory resident)

▪ Level 2 table: each PTE points to a page 
(paged in and out like any other data)

Level 1

Table

..
.

Level 2

Tables

...
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A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2

page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023 
unallocated

pages

VP 9215

Virtual

memory

(1K - 9)
null PTEs 

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated  pages

1 allocated VM page
for the stack

64 bit addresses, 8KB pages, 8-byte PTEs

Here, addresses 
increase from 
top to bottom
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Translating with a k-level Page Table

Page table 
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table
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Summary

 Programmer’s view of virtual memory
▪ Each process has its own private linear address space

▪ Cannot be corrupted by other processes

 System view of virtual memory
▪ Uses memory efficiently by caching virtual memory pages

▪ Efficient only because of locality

▪ Simplifies memory management and programming

▪ Simplifies protection by providing a convenient interpositioning point 
to check permissions

 Implemented via combination of hardware & software
▪ MMU, TLB, exception handling mechanisms part of hardware

▪ Page fault handlers, TLB management performed in software
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