
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory: Concepts

18-213/18-613: Introduction to Computer Systems
12th Lecture, October 1, 2024

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements

 “Low-stakes take-home midterm”
goes out on Monday evening (after small groups finish)
▪ 80 minutes self-timed. Covers through virtual memort

▪ Questions similar to homeworks, but only one attempt.

▪ Tests what you’ve learned, as in a real midterm (and as in the Final).

▪ Low-stakes: Only 4% of grade (could even be “half dropped”).

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Caching Wrap-Up

 Quick review

 Miss-Rate Analysis

 Blocked Operations

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Mountain

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes

of spatial

locality

Ridges

of temporal

locality

L1

Mem

L2

L3

Aggressive

prefetching

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication Example

 Description:
▪ Multiply N x N matrices

▪ Matrix elements are
doubles (8 bytes)

▪ O(N3) total operations

▪ N reads per source
element

▪ N values summed per
destination

▪ but may be able to
hold in register

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

Variable sum
held in register

matmult/mm.c

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Miss Rate Analysis for Matrix Multiply

 Assume:
▪ Block size = 64B (big enough for eight doubles)

▪ Matrix dimension (N) is very large

▪ Approximate 1/N as 0.0

▪ Cache is not even big enough to hold multiple rows

 Analysis Method:
▪ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

Inner loop:

Column-wiseRow-wise Fixed

Miss rate for inner loop iterations:
 A B C
 0.0

matmult/mm.c

Block size = 64B (eight doubles)

Avg misses/iter = 1.125
0.125 1.0

A B C

(i,*)

(*,j)
(i,j)

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
 A B C
 0.0

matmult/mm.c

Block size = 64B (eight doubles)

0.125 0.125
Avg misses/iter = 0.25

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-wise Column-wiseFixed

Miss rate for inner loop iterations:
 A B C
 0.0

matmult/mm.c

Block size = 64B (eight doubles)

1.0 1.0
Avg misses/iter = 2.0

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• avg misses/iter = 1.125

kij (& ikj):
• 2 loads, 1 store
• avg misses/iter = 0.25

jki (& kji):
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki

kji

ijk

jik

kij

ikj ijk / jik

jki / kji

kij / ikj

Cycles per inner loop iteration

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication Cache Miss Analysis

 Assume:
▪ Matrix elements are doubles. Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 First iteration (ijk):

▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

x= n

x=

8 wide

A

(i,*)

B

(*,j)

C

(i,j)

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis (cont)
 Assume:

▪ Matrix elements are doubles. Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

 Total misses:
▪ (9n/8) n2 = (9/8) n3

x=

8 wide

n

A

(i,*)

B

(*,j)

C

(i,j)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=L)

 for (j = 0; j < n; j+=L)

 for (k = 0; k < n; k+=L)

 /* L x L mini matrix multiplications */

 for (i1 = i; i1 < i+L; i1++)

 for (j1 = j; j1 < j+L; j1++)

 for (k1 = k; k1 < k+L; k1++)

 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size L x L

matmult/bmm.c

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Cache line = 8 doubles. Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3L2 < C

 First (block) iteration:
▪ Misses per block: L2/8

▪ Blocks per Iteration: 2n/L

 (omitting matrix c)

▪ Misses per Iteration:

 2n/L x L2/8 = nL/4

▪ Afterwards in cache
(schematic) x=

x=

Block size L x L

n/L blocks

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Cache line = 8 doubles. Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3L2 < C

 Second (block) iteration:
▪ Same misses as

 first iteration

▪ 2n/L x L2/8 = nL/4

 Total misses:
▪ nL/4 misses per iteration x (n/L)2 iterations = n3/(4L) misses

x=

Block size L x L

n/L blocks

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Summary

 No blocking (ijk): (9/8) n3 misses

 Blocking: (1/(4L)) n3 misses

 Use largest block size L, such that L satisfies 3L2 < C
▪ Fit three blocks in cache! Two input, one output.

 Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hmmm, How Does This Work?!
Process 1 Process 2 Process n

Solution: Virtual Memory (today and next lecture)

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory

 Address spaces CSAPP 9.1-9.2

 VM as a tool for caching CSAPP 9.3

 VM as a tool for memory management CSAPP 9.4

 VM as a tool for memory protection CSAPP 9.5

 Address translation CSAPP 9.6

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blank Slide for Intro Sketching

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A System Using Physical Addressing

 Used in “simple” systems like embedded microcontrollers in
devices like elevators and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A System Using Virtual Addressing

 Used in all modern servers, laptops, and smart phones

 One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Spaces

 Linear address space: Ordered set of contiguous non-negative integer
addresses:
 {0, 1, 2, 3 … }

 Virtual address space: Set of N = 2n virtual addresses
 {0, 1, 2, 3, …, N-1}

 Physical address space: Set of M = 2m physical addresses
 {0, 1, 2, 3, …, M-1}

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Virtual Memory (VM)?

 Uses main memory efficiently
▪ Use DRAM as a cache for parts of a virtual address space

 Simplifies memory management
▪ Each process gets the same uniform linear address space

 Isolates address spaces
▪ One process can’t interfere with another’s memory

▪ User program cannot access privileged kernel information and code

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Address spaces

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Caching

 Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

 The contents of the array on disk are cached in physical
memory (DRAM cache)
▪ These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

DRAM Cache Organization

 DRAM cache organization driven by the enormous miss penalty
▪ DRAM is about 10x slower than SRAM

▪ Disk is about 10,000x slower than DRAM

▪ Time to load block from disk > 1ms (> 1 million clock cycles)

▪ CPU can do a lot of computation during that time

 Consequences
▪ Large page (block) size: typically 4 KB

▪ Linux “huge pages” are 2 MB (default) to 1 GB

▪ Fully associative. Why?

▪ Any VP can be placed in any PP

▪ Requires a “large” mapping function – different from cache memories

▪ Highly sophisticated, expensive replacement algorithms. Why?

▪ Too complicated and open-ended to be implemented in hardware

▪ Write-back rather than write-through. Why?

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enabling Data Structure: Page Table

 A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
▪ Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Hit

 Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Fault

 Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Triggering a Page Fault
 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

 MMU triggers page fault exception
▪ (More details in later lecture)

▪ Raise privilege level to supervisor mode

▪ Causes procedure call to software page fault handler

int a[1000];

main ()

{

 a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault

Execute page fault
handler

movl

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
 Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Completing page fault
 Page fault handler executes return from

interrupt (iret) instruction
▪ Like ret instruction, but also restores privilege level

▪ Return to instruction that caused fault

▪ But, this time there is no page fault

int a[1000];

main ()

{

 a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault

Copy page from
disk to memory

Return and
reexecute movl

movl

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating Pages

 Allocating a new page (VP 5) of virtual memory.

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

null

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating Pages

 Allocating a new page (VP 5) of virtual memory.

 Subsequent miss will bring it into memory

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue Again!

 Virtual memory seems terribly inefficient, but it works
because of locality.

 At any point in time, programs tend to access a set of active
virtual pages called the working set
▪ Programs with better temporal locality will have smaller working sets

 If (working set size < main memory size)
▪ Good performance for one process (after cold misses)

 If (working set size > main memory size)
▪ Thrashing: Performance meltdown where pages are swapped (copied)

in and out continuously

▪ If multiple processes run at the same time, thrashing occurs if
their total working set size > main memory size

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Address spaces

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Key idea: each process has its own virtual address space
▪ It can view memory as a simple linear array

▪ Mapping function scatters addresses through physical memory

▪ Well-chosen mappings can improve locality

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

VM as a Tool for Memory Management

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Simplifying memory allocation
▪ Each virtual page can be mapped to any physical page

▪ A virtual page can be stored in different physical pages at different times

▪ Can allocate the same virtual addresses on the heap for multiple processes

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

VM as a Tool for Memory Management

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Sharing code and data among processes
▪ Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

VM as a Tool for Memory Management

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simplifying Linking and Loading

 Linking
▪ Each program has similar virtual

address space

▪ Code, data, and heap always start
at the same addresses.

 Loading
▪ execve allocates virtual pages

for .text and .data sections &
creates PTEs marked as invalid

▪ The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

 Discussed later in lecture
 on Linking and Loading

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Address spaces

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Protection
 Extend page table entries (PTEs) with permission bits
 MMU checks these bits on each access

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

EXEC

Yes

EXEC

Yes

Yes

Yes

Yes

No

SUP: requires kernel mode

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Address spaces

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM Address Translation

 Virtual Address Space
▪ V = {0, 1, …, N–1}

 Physical Address Space
▪ P = {0, 1, …, M–1}

 Address Translation

▪ MAP: V → P U {}

▪ For virtual address a:

▪ MAP(a) = a’ if data at virtual address a is at physical address a’ in P

▪ MAP(a) = if data at virtual address a is not in physical memory

– Either invalid or stored on disk

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Address Translation Symbols

 Basic Parameters
▪ N = 2n : Number of addresses in virtual address space

▪ M = 2m : Number of addresses in physical address space

▪ P = 2p : Page size (bytes)

 Components of the virtual address (VA)
▪ VPO: Virtual page offset

▪ VPN: Virtual page number

 Components of the physical address (PA)
▪ PPO: Physical page offset (same as VPO)

▪ PPN: Physical page number

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register (PTBR)

(CR3 in x86)

Page table

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim to page out (if dirty, writes pages to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA
hit

PA
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Speeding up Translation with a TLB

 Page table entries (PTEs) are cached in L1 like any other
memory word

▪ PTEs may be evicted by other data references

▪ PTE hit still requires a small L1 delay

 Solution: Translation Lookaside Buffer (TLB)
▪ Small set-associative hardware cache in MMU

▪ Maps virtual page numbers to physical page numbers

▪ Contains complete page table entries for small number of pages

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Address Translation Symbols

 Basic Parameters
▪ N = 2n : Number of addresses in virtual address space

▪ M = 2m : Number of addresses in physical address space

▪ P = 2p : Page size (bytes)

 Components of the virtual address (VA)
▪ TLBI: TLB index

▪ TLBT: TLB tag

▪ VPO: Virtual page offset

▪ VPN: Virtual page number

 Components of the physical address (PA)
▪ PPO: Physical page offset (same as VPO)

▪ PPN: Physical page number

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing the TLB

 MMU uses the VPN portion of the virtual address to
access the TLB:

TLB tag (TLBT) TLB index (TLBI)

0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag
of line within set

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Hit

MMU
Cache/
Memory

CPU

CPU Chip

VA

1

PA

4

Data

5

A TLB hit eliminates a cache/memory access

TLB

2

VPN

PTE

3

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional cache/memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multi-Level Page Tables

 Suppose:
▪ 4KB (212) page size, 48-bit address space, 8-byte PTE

 Problem:
▪ Would need a 512 GB page table!

▪ 248 * 2-12 * 23 = 239 bytes

 Common solution: Multi-level page table

 Example: 2-level page table
▪ Level 1 table: each PTE points to a page table (always

memory resident)

▪ Level 2 table: each PTE points to a page
(paged in and out like any other data)

Level 1

Table

..
.

Level 2

Tables

...

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2

page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages

VP 9215

Virtual

memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

64 bit addresses, 8KB pages, 8-byte PTEs

Here, addresses
increase from
top to bottom

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Programmer’s view of virtual memory
▪ Each process has its own private linear address space

▪ Cannot be corrupted by other processes

 System view of virtual memory
▪ Uses memory efficiently by caching virtual memory pages

▪ Efficient only because of locality

▪ Simplifies memory management and programming

▪ Simplifies protection by providing a convenient interpositioning point
to check permissions

 Implemented via combination of hardware & software
▪ MMU, TLB, exception handling mechanisms part of hardware

▪ Page fault handlers, TLB management performed in software

	Slide 1
	Slide 2: Virtual Memory: Concepts 18-213/18-613: Introduction to Computer Systems 12th Lecture, October 1, 2024
	Slide 3: Announcements
	Slide 4: Caching Wrap-Up
	Slide 5: The Memory Mountain
	Slide 6: Matrix Multiplication Example
	Slide 7: Miss Rate Analysis for Matrix Multiply
	Slide 8: Matrix Multiplication (ijk)
	Slide 9: Matrix Multiplication (kij)
	Slide 10: Matrix Multiplication (jki)
	Slide 11: Summary of Matrix Multiplication
	Slide 12: Core i7 Matrix Multiply Performance
	Slide 13: Matrix Multiplication Cache Miss Analysis
	Slide 14: Cache Miss Analysis (cont)
	Slide 15: Blocked Matrix Multiplication
	Slide 16: Cache Miss Analysis
	Slide 17: Cache Miss Analysis
	Slide 18: Blocking Summary
	Slide 19: Hmmm, How Does This Work?!
	Slide 20: Virtual Memory
	Slide 21: Blank Slide for Intro Sketching
	Slide 22: A System Using Physical Addressing
	Slide 23: A System Using Virtual Addressing
	Slide 24: Address Spaces
	Slide 25: Why Virtual Memory (VM)?
	Slide 26: Today
	Slide 27: VM as a Tool for Caching
	Slide 28: DRAM Cache Organization
	Slide 29: Enabling Data Structure: Page Table
	Slide 30: Page Hit
	Slide 31: Page Fault
	Slide 32: Triggering a Page Fault
	Slide 33: Handling Page Fault
	Slide 34: Handling Page Fault
	Slide 35: Handling Page Fault
	Slide 36: Handling Page Fault
	Slide 37: Completing page fault
	Slide 38: Allocating Pages
	Slide 39: Allocating Pages
	Slide 40: Locality to the Rescue Again!
	Slide 41: Today
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Simplifying Linking and Loading
	Slide 46: Today
	Slide 47: VM as a Tool for Memory Protection
	Slide 48: Today
	Slide 49: VM Address Translation
	Slide 50: Summary of Address Translation Symbols
	Slide 51: Address Translation With a Page Table
	Slide 52: Address Translation: Page Hit
	Slide 53: Address Translation: Page Fault
	Slide 54: Integrating VM and Cache
	Slide 55: Speeding up Translation with a TLB
	Slide 56: Summary of Address Translation Symbols
	Slide 57: Accessing the TLB
	Slide 58: TLB Hit
	Slide 59: TLB Miss
	Slide 60: Multi-Level Page Tables
	Slide 61: A Two-Level Page Table Hierarchy
	Slide 62: Translating with a k-level Page Table
	Slide 63: Summary

