
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals and Files

18-213/18-613: Introduction to Computer Systems
19th Lecture, June 27th, 2024

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */

pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);

 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
if (!bg) {

int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }

else
printf("%d %s", pid, cmdline);

}
return;

}
shellex.cshellex.c

Oops. There is a
problem with
this code.

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example

 Shell designed to run indefinitely
▪ Should not accumulate unneeded resources

▪ Memory

▪ Child processes

▪ File descriptors

 Our example shell correctly waits for and reaps
 foreground jobs

 But what about background jobs?
▪ Will become zombies when they terminate

▪ Will never be reaped because shell (typically) will not terminate

▪ Will create a memory leak that could run the kernel out of memory

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals

 A signal is a small message that notifies a process that an
event of some type has occurred in the system
▪ Akin to exceptions and interrupts

▪ Sent from the kernel (sometimes at the request of another process) to a
process

▪ Signal type is identified by small integer ID’s (1-30)

▪ Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

 Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

 Kernel sends a signal for one of the following reasons:
▪ Kernel has detected a system event such as divide-by-zero (SIGFPE) or

the termination of a child process (SIGCHLD)

▪ Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C0

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
 A destination process receives a signal when it is forced by

the kernel to react in some way to the delivery of the signal

 Some possible ways to react:
▪ Ignore the signal (do nothing)

▪ Terminate the process (with optional core dump)

▪ Catch the signal by executing a user-level function called signal handler

▪ Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(2) Control passes

to signal handler

(3) Signal

handler runs
(4) Signal handler

returns to

next instruction

Icurr
Inext

(1) Signal received

by process

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

 A signal is pending if sent but not yet received
▪ There can be at most one pending signal of any particular type

▪ Important: Signals are not queued

▪ If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

 A process can block the receipt of certain signals
▪ Blocked signals can be delivered, but will not be received until the signal

is unblocked

 A pending signal is received at most once

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

 Kernel maintains pending and blocked bit vectors in the
context of each process
▪ pending: represents the set of pending signals

▪ Kernel sets bit k in pending when a signal of type k is delivered

▪ Kernel clears bit k in pending when a signal of type k is received

▪ blocked: represents the set of blocked signals

▪ Can be set and cleared by using the sigprocmask function

▪ Also referred to as the signal mask.

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups

 Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp()

Return process group of current process

setpgid()

Change process group of a process (see
text for details)

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program

 /bin/kill program
sends arbitrary signal to a
process or process group

 Examples
▪ /bin/kill –9 24818

Send SIGKILL to process 24818

▪ /bin/kill –9 –24817

Send SIGKILL to every process
in process group 24817

linux> ./forks 16

Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

 PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> /bin/kill -9 -24817

linux> ps

 PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every

job in the foreground process group.
▪ SIGINT – default action is to terminate each process

▪ SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z
bluefish> ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended

bluefish> ps w

 PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28107 pts/8 T 0:01 ./forks 17

28108 pts/8 T 0:01 ./forks 17

28109 pts/8 R+ 0:00 ps w

bluefish> fg

./forks 17

<types ctrl-c>

bluefish> ps w

 PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function
void fork12()

{

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {

 /* Child: Infinite Loop */

 while(1)

 ;

 }

for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);

kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

 printf("Child %d terminated abnormally\n", wpid);

 }

} forks.c

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals

 Signals are handled upon return from supervisor to user
mode, e.g. dispatching or returning from a system call.

 Process handles signals in order from lowest to highest
▪ For each signal, it computes pnb = pending & ~blocked

▪ If pnb it calls the handler (if not, it just moves on to the next signal).

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Default Actions

 Each signal type has a predefined default action, which is
one of:
▪ The process terminates

▪ The process stops until restarted by a SIGCONT signal

▪ The process ignores the signal

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Installing Signal Handlers
 The signal function modifies the default action associated

with the receipt of signal signum:
▪ handler_t *signal(int signum, handler_t *handler)

 Different values for handler:
▪ SIG_IGN: ignore signals of type signum

▪ SIG_DFL: revert to the default action on receipt of signals of type signum

▪ Otherwise, handler is the address of a user-level signal handler

▪ Called when process receives signal of type signum

▪ Referred to as “installing” the handler

▪ Executing handler is called “catching” or “handling” the signal

▪ When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */

{

 printf("So you think you can stop the bomb with ctrl-c, do you?\n");

sleep(2);

 printf("Well...");

 fflush(stdout);

sleep(1);

printf("OK. :-)\n");

exit(0);

}

int main(int argc, char** argv)

{

/* Install the SIGINT handler */

if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */

pause();

return 0;

} sigint.c

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrency with Signal Handlers

 Handlers can interleave with program logic

 Handlers can interleave with other handlers

(2) Control passes

to handler S

Main program

(5) Handler T

returns to

handler S

Icurr

Inext

(1) Program

catches signal s

Handler S Handler T

(3) Program

catches signal t

(4) Control passes

to handler T

(6) Handler S

returns to

main

program

(7) Main program

resumes

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking and Unblocking Signals

 Implicit blocking mechanism
▪ Kernel blocks any pending signals of type currently being handled.

▪ E.g., A SIGINT handler can’t be interrupted by another SIGINT

 Explicit blocking and unblocking mechanism
▪ sigprocmask function

 Supporting functions
▪ sigemptyset – Create empty set

▪ sigfillset – Add every signal number to set

▪ sigaddset – Add signal number to set

▪ sigdelset – Delete signal number from set

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Temporarily Blocking Signals

sigset_t mask, prev_mask;

 Sigemptyset(&mask);

 Sigaddset(&mask, SIGINT);

 /* Block SIGINT and save previous blocked set */

 Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT */

 /* Restore previous blocked set, unblocking SIGINT */

 Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Signal Handling

 Handlers are tricky because they are concurrent with
main program and share the same global data structures.
▪ Shared data structures can become corrupted.

 We’ll explore concurrency issues later in the term.

 For now here are some guidelines to help you avoid
trouble.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Guidelines for Writing Safe Handlers

 G0: Keep your handlers as simple as possible
▪ e.g., Set a global flag and return

 G1: Call only async-signal-safe functions in your handlers
▪ printf, sprintf, malloc, and exit are not safe!

 G2: Save and restore errno on entry and exit
▪ So that other handlers don’t overwrite your value of errno

 G3: Protect accesses to shared data structures by temporarily
blocking all signals.
▪ To prevent possible corruption

 G4: Declare global variables as volatile
▪ To prevent compiler from storing them in a register

 G5: Declare global flags as volatile sig_atomic_t
▪ flag: variable that is only read or written (e.g. flag = 1, not flag++)

▪ Flag declared this way does not need to be protected like other globals

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Async-Signal-Safety

 Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

 Posix guarantees 117 functions to be async-signal-safe
▪ Source: “man 7 signal-safety”

▪ Popular functions on the list:

▪ _exit, write, wait, waitpid, sleep, kill

▪ Popular functions that are not on the list:

▪ printf, sprintf, malloc, exit

▪ Unfortunate fact: write is the only async-signal-safe output function

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #1
 Use the reentrant SIO (Safe I/O library) from csapp.c in

your handlers.
▪ ssize_t sio_puts(char s[]) /* Put string */

▪ ssize_t sio_putl(long v) /* Put long */

▪ void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */

{

 Sio_puts("So you think you can stop the bomb"

 " with ctrl-c, do you?\n");

sleep(2);

Sio_puts("Well...");

sleep(1);

Sio_puts("OK. :-)\n");

_exit(0);

} sigintsafe.c

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #2
 Use the new & improved reentrant sio_printf !

▪ Handles restricted class of printf format strings

▪ Recognizes: %c %s %d %u %x %%

▪ Size designators ‘l’ and ‘z’

void sigint_handler(int sig) /* Safe SIGINT handler */

{

 Sio_printf("So you think you can stop the bomb"

 " (process %d) with ctrl-%c, do you?\n",

 (int) getpid(), 'c');

 sleep(2);

 Sio_puts("Well...");

 sleep(1);

 Sio_puts("OK. :-)\n");

 _exit(0);

}

sigintsafe.c

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Pending signals are
not queued
▪ For each signal type, one

bit indicates whether or
not signal is pending…

▪ …thus at most one
pending signal of any
particular type.

 You can’t use signals
to count events, such as
children terminating.

volatile int ccount = 0;

void child_handler(int sig) {

 int olderrno = errno;

pid_t pid;

 if ((pid = wait(NULL)) < 0)

 Sio_error("wait error");

 ccount--;

 Sio_puts("Handler reaped child ");

 Sio_putl((long)pid);

 Sio_puts(" \n");

sleep(1);

errno = olderrno;

}

void fork14() {

pid_t pid[N];

int i;

 ccount = N;

 Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {

 if ((pid[i] = Fork()) == 0) {

Sleep(1);

 exit(0); /* Child exits */

 }

 }

 while (ccount > 0) /* Parent spins */

 ;

} forks.c

whaleshark> ./forks 14

Handler reaped child 23240

Handler reaped child 23241

. . .(hangs)

Correct Signal Handling

This code is incorrect!

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Signal Handling

 Must wait for all terminated child processes
▪ Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{
 int olderrno = errno;

pid_t pid;
 while ((pid = wait(NULL)) > 0) {
 ccount--;
 Sio_puts("Handler reaped child ");
 Sio_putl((long)pid);
 Sio_puts(" \n");
 }
 if (errno != ECHILD)
 Sio_error("wait error");
 errno = olderrno;
}

whaleshark> ./forks 15

Handler reaped child 23246

Handler reaped child 23247

Handler reaped child 23248

Handler reaped child 23249

Handler reaped child 23250

whaleshark>

(Here N = 5)

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

void handler(int sig)

{

 int olderrno = errno;

 sigset_t mask_all, prev_all;

pid_t pid;

Sigfillset(&mask_all);

 while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

 deletejob(pid); /* Delete the child from the job list */

 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 }

 if (errno != ECHILD)

 Sio_error("waitpid error");

 errno = olderrno;

}

 SIGCHLD handler for a simple shell
▪ Blocks all signals while running critical code

procmask1.c

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

int main(int argc, char **argv)

{

int pid;

sigset_t mask_all, prev_all;

int n = N; /* N = 5 */

Sigfillset(&mask_all);

Signal(SIGCHLD, handler);

initjobs(); /* Initialize the job list */

 while (n--) {

 if ((pid = Fork()) == 0) { /* Child */

 Execve("/bin/date", argv, NULL);

 }

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */

 addjob(pid); /* Add the child to the job list */

 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 }

 exit(0);

}

 Simple shell with a subtle synchronization error because it
assumes parent runs before child.

procmask1.c

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Corrected Shell Program without Race

int main(int argc, char **argv)

{

int pid;

sigset_t mask_all, mask_one, prev_one;

int n = N; /* N = 5 */

Sigfillset(&mask_all);

Sigemptyset(&mask_one);

Sigaddset(&mask_one, SIGCHLD);

Signal(SIGCHLD, handler);

initjobs(); /* Initialize the job list */

 while (n--) {

 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

 if ((pid = Fork()) == 0) { /* Child process */

 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

 Execve("/bin/date", argv, NULL);

 }

 Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */

 addjob(pid); /* Add the child to the job list */

 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

 }

 exit(0);

} procmask2.c

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)

{

 int olderrno = errno;

pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */

errno = olderrno;

}

void sigint_handler(int s)

{

}

 Handlers for program explicitly waiting for SIGCHLD to arrive.

waitforsignal.c

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals
int main(int argc, char **argv) {

 sigset_t mask, prev;

 int n = N; /* N = 10 */

 Signal(SIGCHLD, sigchld_handler);

 Signal(SIGINT, sigint_handler);

 Sigemptyset(&mask);

 Sigaddset(&mask, SIGCHLD);

 while (n--) {

 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

 if (Fork() == 0) /* Child */

 exit(0);

/* Parent */

pid = 0;

Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */

while (!pid)

;

/* Do some work after receiving SIGCHLD */

printf(".");

}

printf("\n");

exit(0);

}
waitforsignal.c

Similar to a shell waiting
for a foreground job to
terminate.

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Program is correct, but very wasteful
▪ Program in busy-wait loop

 Possible race condition
▪ Between checking pid and starting pause, might receive signal

 Safe, but slow
▪ Will take up to one second to respond

Explicitly Waiting for Signals

while (!pid) /* Race! */

 pause();

while (!pid) /* Too slow! */

sleep(1);

while (!pid)

;

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

sigprocmask(SIG_SETMASK, &mask, &prev);

pause();

sigprocmask(SIG_SETMASK, &prev, NULL);

 int sigsuspend(const sigset_t *mask)

 Equivalent to atomic (uninterruptable) version of:

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend
int main(int argc, char **argv) {

 sigset_t mask, prev;

 int n = N; /* N = 10 */

 Signal(SIGCHLD, sigchld_handler);

 Signal(SIGINT, sigint_handler);

 Sigemptyset(&mask);

 Sigaddset(&mask, SIGCHLD);

 while (n--) {

 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

 if (Fork() == 0) /* Child */

 exit(0);

 /* Wait for SIGCHLD to be received */

pid = 0;

 while (!pid)

Sigsuspend(&prev);

/* Optionally unblock SIGCHLD */

Sigprocmask(SIG_SETMASK, &prev, NULL);

/* Do some work after receiving SIGCHLD */

printf(".");

}

printf("\n");

exit(0);

} sigsuspend.c

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Signals provide process-level exception handling
▪ Can generate from user programs

▪ Can define effect by declaring signal handler

▪ Be very careful when writing signal handlers

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 A Linux file is a sequence of m bytes:
▪ B0 , B1 , , Bk , , Bm-1

 Cool fact: All I/O devices are represented as files:
▪ /dev/sda2 (/usr disk partition)

▪ /dev/tty2 (terminal)

 Even the kernel is represented as a file:
▪ /boot/vmlinuz-3.13.0-55-generic (kernel image)

▪ /proc (kernel data structures)

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

 Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O:
▪ Opening and closing files

▪ open()and close()

▪ Reading and writing a file

▪ read() and write()

▪ Changing the current file position (seek)

▪ indicates next offset into file to read or write

▪ lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Types

 Each file has a type indicating its role in the system
▪ Regular file: Contains arbitrary data

▪ Directory: Index for a related group of files

▪ Socket: For communicating with a process on another machine

 Other file types beyond our scope
▪ Named pipes (FIFOs)

▪ Symbolic links

▪ Character and block devices

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Regular Files

 A regular file contains arbitrary data

 Applications often distinguish between text files and binary
files
▪ Text files are regular files with only ASCII or Unicode characters

▪ Binary files are everything else

▪ e.g., object files, JPEG images

▪ Kernel doesn’t know the difference!

 Text file is sequence of text lines
▪ Text line is sequence of chars terminated by newline char (‘\n’)

▪ Newline is 0xa, same as ASCII line feed character (LF)

 End of line (EOL) indicators in other systems
▪ Linux and Mac OS: ‘\n’ (0xa)

▪ line feed (LF)

▪ Windows and Internet protocols: ‘\r\n’ (0xd 0xa)

▪ Carriage return (CR) followed by line feed (LF)

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directories

 Directory consists of an array of links
▪ Each link maps a filename to a file

 Each directory contains at least two entries
▪ . (dot) is a link to itself

▪ .. (dot dot) is a link to the parent directory in the directory
hierarchy (next slide)

 Commands for manipulating directories
▪ mkdir: create empty directory

▪ ls: view directory contents

▪ rmdir: delete empty directory

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pathnames

 Locations of files in the hierarchy denoted by pathnames
▪ Absolute pathname starts with ‘/’ and denotes path from root

▪ /home/droh/hello.c

▪ Relative pathname denotes path from current working directory

▪ ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Opening Files

 Opening a file informs the kernel that you are getting ready to
access that file

 Returns a small identifying integer file descriptor
▪ fd == -1 indicates that an error occurred

 Each process created by a Linux shell begins life with three
open files associated with a terminal:
▪ 0: standard input (stdin)

▪ 1: standard output (stdout)

▪ 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

 perror("open");

 exit(1);

}

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closing Files

 Closing a file informs the kernel that you are finished
accessing that file

 Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

 Moral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

 perror("close");

 exit(1);

}

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Files

 Reading a file copies bytes from the current file position to
memory, and then updates file position

 Returns number of bytes read from file fd into buf
▪ Return type ssize_t is signed integer

▪ nbytes < 0 indicates that an error occurred

▪ Short counts (nbytes < sizeof(buf)) are possible and are not
errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

 perror("read");

 exit(1);

}

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Files

 Writing a file copies bytes from memory to the current file
position, and then updates current file position

 Returns number of bytes written from buf to file fd
▪ nbytes < 0 indicates that an error occurred

▪ As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

 perror("write");

 exit(1);

}

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example
 Copying file to stdout, one byte at a time

 Demo:
linux> strace ./showfile1_nobuf names.txt

#include "csapp.h"

int main(int argc, char *argv[])

{

 char c;

 int infd = STDIN_FILENO;

 if (argc == 2) {

 infd = Open(argv[1], O_RDONLY, 0);

 }

 while(Read(infd, &c, 1) != 0)

 Write(STDOUT_FILENO, &c, 1);

 exit(0);

} showfile1_nobuf.c

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Short Counts

 Short counts can occur in these situations:
▪ Encountering (end-of-file) EOF on reads

▪ Reading text lines from a terminal

▪ Reading and writing network sockets

 Short counts never occur in these situations:
▪ Reading from disk files (except for EOF)

▪ Writing to disk files

 Best practice is to always allow for short counts.

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Home-grown buffered I/O code
 Copying file to stdout, BUFSIZE bytes at a time

 Demo:
linux> strace ./showfile2_buf names.txt

#include "csapp.h"

#define BUFSIZE 64

int main(int argc, char *argv[])

{

 char buf[BUFSIZE];

 int infd = STDIN_FILENO;

 if (argc == 2) {

 infd = Open(argv[1], O_RDONLY, 0);

 }

 while((nread = Read(infd, buf, BUFSIZE)) != 0)

 Write(STDOUT_FILENO, buf, nread);

 exit(0);

} showfile2_buf.c

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 Metadata, sharing, and redirection

 Standard I/O

 RIO (robust I/O) package

 Closing remarks

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Metadata
 Metadata is data about data, in this case file data

 Per-file metadata maintained by kernel
▪ accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

 dev_t st_dev; /* Device */

 ino_t st_ino; /* inode */

 mode_t st_mode; /* Protection and file type */

 nlink_t st_nlink; /* Number of hard links */

 uid_t st_uid; /* User ID of owner */

 gid_t st_gid; /* Group ID of owner */

 dev_t st_rdev; /* Device type (if inode device) */

 off_t st_size; /* Total size, in bytes */

 unsigned long st_blksize; /* Blocksize for filesystem I/O */

 unsigned long st_blocks; /* Number of blocks allocated */

 time_t st_atime; /* Time of last access */

 time_t st_mtime; /* Time of last modification */

 time_t st_ctime; /* Time of last change */

};

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How the Unix Kernel Represents Open Files

v-node table
[shared by all processes]

File access

...

File size

File type

Info in
stat
struct

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

stderr

stdout

stdin

fd = Open(argv[1], O_RDONLY, 0); /* Suppose fd == 3, say */

Open file table
[shared by all processes]

File pos

refcnt=1

...

File A (terminal)

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How the Unix Kernel Represents Open Files

 Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

File pos is maintained per open file

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Sharing
 Two distinct descriptors sharing the same disk file through

two distinct open file table entries
▪ E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A (disk)

File B (disk)

Different logical but same physical file

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork
 A child process inherits its parent’s open files

▪ Note: situation unchanged by exec functions (use fcntl to change)

 Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork

 A child process inherits its parent’s open files

 After fork:

▪ Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

File is shared between processes

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection

 Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

 Answer: By calling the dup2(oldfd, newfd) function
▪ Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example

 Step #1: open file to which stdout should be redirected
▪ Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example (cont.)

 Step #2: call dup2(4,1)
▪ cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

Two descriptors point to the same file

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

 int fd1, fd2, fd3;

 char c1, c2, c3;

 char *fname = argv[1];

 fd1 = Open(fname, O_RDONLY, 0);

 fd2 = Open(fname, O_RDONLY, 0);

 fd3 = Open(fname, O_RDONLY, 0);

 Dup2(fd2, fd3);

 Read(fd1, &c1, 1);

 Read(fd2, &c2, 1);

 Read(fd3, &c3, 1);

 printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

 return 0;

} ffiles1.c

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

 int fd1, fd2, fd3;

 char c1, c2, c3;

 char *fname = argv[1];

 fd1 = Open(fname, O_RDONLY, 0);

 fd2 = Open(fname, O_RDONLY, 0);

 fd3 = Open(fname, O_RDONLY, 0);

 Dup2(fd2, fd3);

 Read(fd1, &c1, 1);

 Read(fd2, &c2, 1);

 Read(fd3, &c3, 1);

 printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

 return 0;

} ffiles1.c

c1 = a, c2 = a, c3 = b

dup2(oldfd, newfd)

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

 int fd1;

 int s = getpid() & 0x1;

 char c1, c2;

 char *fname = argv[1];

 fd1 = Open(fname, O_RDONLY, 0);

 Read(fd1, &c1, 1);

 if (fork()) { /* Parent */

 sleep(s);

 Read(fd1, &c2, 1);

 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

 } else { /* Child */

 sleep(1-s);

 Read(fd1, &c2, 1);

 printf("Child: c1 = %c, c2 = %c\n", c1, c2);

 }

 return 0;

} ffiles2.c

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

 What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

 int fd1;

 int s = getpid() & 0x1;

 char c1, c2;

 char *fname = argv[1];

 fd1 = Open(fname, O_RDONLY, 0);

 Read(fd1, &c1, 1);

 if (fork()) { /* Parent */

 sleep(s);

 Read(fd1, &c2, 1);

 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

 } else { /* Child */

 sleep(1-s);

 Read(fd1, &c2, 1);

 printf("Child: c1 = %c, c2 = %c\n", c1, c2);

 }

 return 0;

} ffiles2.c

Child: c1 = a, c2 = b

Parent: c1 = a, c2 = c

Parent: c1 = a, c2 = b

Child: c1 = a, c2 = c

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 Metadata, sharing, and redirection

 Standard I/O

 RIO (robust I/O) package

 Closing remarks

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Functions

 The C standard library (libc.so) contains a collection of
higher-level standard I/O functions
▪ Documented in Appendix B of K&R

 Examples of standard I/O functions:
▪ Opening and closing files (fopen and fclose)

▪ Reading and writing bytes (fread and fwrite)

▪ Reading and writing text lines (fgets and fputs)

▪ Formatted reading and writing (fscanf and fprintf)

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Streams

 Standard I/O models open files as streams
▪ Abstraction for a file descriptor and a buffer in memory

 C programs begin life with three open streams
(defined in stdio.h)
▪ stdin (standard input)

▪ stdout (standard output)

▪ stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

 fprintf(stdout, "Hello, world\n");

}

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Motivation

 Applications often read/write one character at a time
▪ getc, putc, ungetc

▪ gets, fgets

▪ Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
▪ read and write require Unix kernel calls

▪ > 10,000 clock cycles

 Solution: Buffered read
▪ Use Unix read to grab block of bytes

▪ User input functions take one byte at a time from buffer

▪ Refill buffer when empty

unreadalready readBuffer

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffering in Standard I/O

 Standard I/O functions use buffered I/O

 Buffer flushed to output fd on “\n”, call to fflush or
exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Buffering in Action

 You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

linux> strace ./hello

execve("./hello", ["hello"], [/* ... */]).

...

write(1, "hello\n", 6) = 6

...

exit_group(0) = ?

#include <stdio.h>

int main()

{

 printf("h");

 printf("e");

 printf("l");

 printf("l");

 printf("o");

 printf("\n");

 fflush(stdout);

 exit(0);

}

Carnegie Mellon

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Example
 Copying file to stdout, line-by-line with stdio

 Demo:
linux> strace ./showfile3_stdio names.txt

#include "csapp.h"

#define MLINE 1024

int main(int argc, char *argv[])

{

 char buf[MLINE];

 FILE *infile = stdin;

 if (argc == 2) {

 infile = fopen(argv[1], "r");

 if (!infile) exit(1);

 }

 while(fgets(buf, MLINE, infile) != NULL)

 fprintf(stdout, buf);

 exit(0);

} showfile3_stdio.c

Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 Metadata, sharing, and redirection

 Standard I/O

 RIO (robust I/O) package

 Closing remarks

Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Unix I/O, C Standard I/O, and RIO

 Two incompatible libraries building on Unix I/O

 Robust I/O (RIO): 15-213 special wrappers
good coding practice: handles error checking, signals, and
“short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

rio_readn

rio_writen

rio_readinitb

rio_readlineb

rio_readnb

RIO
functions

Carnegie Mellon

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Recap

 Short counts can occur in these situations:
▪ Encountering (end-of-file) EOF on reads

▪ Reading text lines from a terminal

▪ Reading and writing network sockets

 Short counts never occur in these situations:
▪ Reading from disk files (except for EOF)

▪ Writing to disk files

 Best practice is to always allow for short counts.

/* Read at most max_count bytes from file into buffer.

 Return number bytes read, or error value */

ssize_t read(int fd, void *buffer, size_t max_count);

/* Write at most max_count bytes from buffer to file.

 Return number bytes written, or error value */

ssize_t write(int fd, void *buffer, size_t max_count);

Carnegie Mellon

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The RIO Package (CS:APP Package)

 RIO is a set of wrappers that provide efficient and robust I/O
in apps, such as network programs that are subject to short
counts

 RIO provides two different kinds of functions
▪ Unbuffered input and output of binary data

▪ rio_readn and rio_writen

▪ Buffered input of text lines and binary data

▪ rio_readlineb and rio_readnb

▪ Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

 Download from http://csapp.cs.cmu.edu/3e/code.html
→ src/csapp.c and include/csapp.h

http://csapp.cs.cmu.edu/public/code.html

Carnegie Mellon

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unbuffered RIO Input and Output
 Same interface as Unix read and write

 Especially useful for transferring data on network sockets

▪ rio_readn returns short count only if it encounters EOF

▪ Only use it when you know how many bytes to read

▪ rio_writen never returns a short count

▪ Calls to rio_readn and rio_writen can be interleaved arbitrarily on
the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

 Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation of rio_readn
/*

 * rio_readn - Robustly read n bytes (unbuffered)

 */

ssize_t rio_readn(int fd, void *usrbuf, size_t n)

{

 size_t nleft = n;

 ssize_t nread;

 char *bufp = usrbuf;

 while (nleft > 0) {

 if ((nread = read(fd, bufp, nleft)) < 0) {

 if (errno == EINTR) /* Interrupted by sig handler return */

 nread = 0; /* and call read() again */

 else

 return -1; /* errno set by read() */

 }

 else if (nread == 0)

 break; /* EOF */

 nleft -= nread;

 bufp += nread;

 }

 return (n - nleft); /* Return >= 0 */

} csapp.c

Carnegie Mellon

84Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions

 Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

▪ rio_readlineb reads a text line of up to maxlen bytes from
file fd and stores the line in usrbuf
▪ Especially useful for reading text lines from network sockets

▪ Stopping conditions
▪ maxlen bytes read
▪ EOF encountered
▪ Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

85Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions (cont)

▪ rio_readnb reads up to n bytes from file fd

▪ Stopping conditions
▪ maxlen bytes read
▪ EOF encountered

▪ Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor

▪ Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

86Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

unread

Buffered I/O: Implementation

 For reading from file

 File has associated buffer to hold bytes that have been read
from file but not yet read by user code

 Layered on Unix file:

already readBuffer

rio_buf
rio_bufptr

rio_cnt

unreadalready readno longer in buffer unseen

Current File Position

Buffered Portion

Carnegie Mellon

87Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Declaration

 All information contained in struct

typedef struct {

 int rio_fd; /* descriptor for this internal buf */

 int rio_cnt; /* unread bytes in internal buf */

 char *rio_bufptr; /* next unread byte in internal buf */

 char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

unreadalready readBuffer

rio_buf
rio_bufptr

rio_cnt

Carnegie Mellon

88Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Example
 Copying file to stdout, line-by-line with rio

 Demo:
linux> strace ./showfile4_rio names.txt

#include "csapp.h"

#define MLINE 1024

int main(int argc, char *argv[])

{

 rio_t rio;

 char buf[MLINE];

 int infd = STDIN_FILENO;

 ssize_t nread = 0;

 if (argc == 2) {

 infd = Open(argv[1], O_RDONLY, 0);

 }

 Rio_readinitb(&rio, infd);

 while((nread = Rio_readlineb(&rio, buf, MLINE)) != 0)

 Rio_writen(STDOUT_FILENO, buf, nread);

 exit(0);

} showfile4_stdio.c

Carnegie Mellon

89Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Unix I/O

 Metadata, sharing, and redirection

 Standard I/O

 RIO (robust I/O) package

 Closing remarks

Carnegie Mellon

90Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Example
 Copying file to stdout, loading entire file with mmap

 Demo:
linux> strace ./showfile5_mmap names.txt

#include "csapp.h"

int main(int argc, char **argv)

{

 struct stat stat;

 if (argc != 2) exit(1);

 int infd = Open(argv[1], O_RDONLY, 0);

 Fstat(infd, &stat);

 size_t size = stat.st_size;

 char *bufp = Mmap(NULL, size, PROT_READ,

 MAP_PRIVATE, infd, 0);

 Write(1, bufp, size);

 exit(0);

} showfile5_mmap.c

Carnegie Mellon

91Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O vs. Standard I/O vs. RIO

 Standard I/O and RIO are implemented using low-level Unix I/O

 Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen

fread fwrite

fscanf fprintf

sscanf sprintf

fgets fputs

fflush fseek

fclose

open read

write lseek

stat close

rio_readn

rio_writen

rio_readinitb

rio_readlineb

rio_readnb

RIO
functions

Carnegie Mellon

92Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Unix I/O

 Pros
▪ Unix I/O is the most general and lowest overhead form of I/O

▪ All other I/O packages are implemented using Unix I/O functions

▪ Unix I/O provides functions for accessing file metadata

▪ Unix I/O functions are async-signal-safe and can be used safely in signal
handlers

 Cons
▪ Dealing with short counts is tricky and error prone

▪ Efficient reading of text lines requires some form of buffering, also tricky
and error prone

▪ Both of these issues are addressed by the standard I/O and RIO packages

Carnegie Mellon

93Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Standard I/O

 Pros:
▪ Buffering increases efficiency by decreasing the number of read and
write system calls

▪ Short counts are handled automatically

 Cons:
▪ Provides no function for accessing file metadata

▪ Standard I/O functions are not async-signal-safe, and not appropriate for
signal handlers

▪ Standard I/O is not appropriate for input and output on network sockets

▪ There are poorly documented restrictions on streams that interact
badly with restrictions on sockets (CS:APP3e, Sec 10.11)

Carnegie Mellon

94Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choosing I/O Functions
 General rule: use the highest-level I/O functions you can

▪ It hides complexity, making the code more meaningful.

▪ But, be sure to understand the functions you use!

 When to use standard I/O
▪ When working with disk or terminal files

 When to use raw Unix I/O
▪ Inside signal handlers, because Unix I/O is async-signal-safe

▪ In rare cases when you need absolute highest performance

 When to write your own:
▪ When you can abstract I/O into a more meaningful paradigm

▪ Example: Textual error logging involves appending messages at the end,
and scanning the log file. Arbitrary writes aren’t allowed. Higher level
functions might permit appending messages, an interator for traversing
messages, filtering by class/category or error level, and opening and
closing a log file.

Carnegie Mellon

95Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Working with Binary Files

 Binary File
▪ Sequence of arbitrary bytes

▪ Including byte value 0x00

 Functions you should never use on binary files
▪ Text-oriented I/O: such as fgets, scanf, rio_readlineb

▪ Interpret EOL characters.

▪ Use functions like rio_readn or rio_readnb instead

▪ String functions

▪ strlen, strcpy, strcat

▪ Interprets byte value 0 (end of string) as special

Carnegie Mellon

96Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Extra Slides

Carnegie Mellon

97Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (3)

 What would be the contents of the resulting file?

#include "csapp.h"

int main(int argc, char *argv[])

{

 int fd1, fd2, fd3;

 char *fname = argv[1];

 fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);

 Write(fd1, "pqrs", 4);

 fd3 = Open(fname, O_APPEND|O_WRONLY, 0);

 Write(fd3, "jklmn", 5);

 fd2 = dup(fd1); /* Allocates descriptor */

 Write(fd2, "wxyz", 4);

 Write(fd3, "ef", 2);

 return 0;

} ffiles3.c

Carnegie Mellon

98Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing Directories
 Only recommended operation on a directory: read its entries

▪ dirent structure contains information about a directory entry

▪ DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>

#include <dirent.h>

{

 DIR *directory;

 struct dirent *de;

 ...

 if (!(directory = opendir(dir_name)))

 error("Failed to open directory");

 ...

 while (0 != (de = readdir(directory))) {

 printf("Found file: %s\n", de->d_name);

 }

 ...

 closedir(directory);

}

Carnegie Mellon

99Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Accessing File Metadata

int main (int argc, char **argv)

{

 struct stat stat;

 char *type, *readok;

 Stat(argv[1], &stat);

 if (S_ISREG(stat.st_mode)) /* Determine file type */

 type = "regular";

 else if (S_ISDIR(stat.st_mode))

 type = "directory";

else

 type = "other";

 if ((stat.st_mode & S_IRUSR)) /* Check read access */

 readok = "yes";

else

readok = "no";

printf("type: %s, read: %s\n", type, readok);

exit(0);

}

linux> ./statcheck statcheck.c

type: regular, read: yes

linux> chmod 000 statcheck.c

linux> ./statcheck statcheck.c

type: regular, read: no

linux> ./statcheck ..

type: directory, read: yes

statcheck.c

	Slide 1
	Slide 2: Signals and Files 18-213/18-613: Introduction to Computer Systems 19th Lecture, June 27th, 2024
	Slide 3: Simple Shell eval Function
	Slide 4: Problem with Simple Shell Example
	Slide 5: Signals
	Slide 6: Signal Concepts: Sending a Signal
	Slide 7: Signal Concepts: Sending a Signal
	Slide 8: Signal Concepts: Sending a Signal
	Slide 9: Signal Concepts: Sending a Signal
	Slide 10: Signal Concepts: Sending a Signal
	Slide 11: Signal Concepts: Sending a Signal
	Slide 12: Signal Concepts: Receiving a Signal
	Slide 13: Signal Concepts: Pending and Blocked Signals
	Slide 14: Signal Concepts: Pending/Blocked Bits
	Slide 15: Signal Concepts: Sending a Signal
	Slide 16: Sending Signals: Process Groups
	Slide 17: Sending Signals with /bin/kill Program
	Slide 18: Sending Signals from the Keyboard
	Slide 19: Example of ctrl-c and ctrl-z
	Slide 20: Sending Signals with kill Function
	Slide 21: Receiving Signals
	Slide 22: Default Actions
	Slide 23: Installing Signal Handlers
	Slide 24: Signal Handling Example
	Slide 25: Concurrency with Signal Handlers
	Slide 26: Blocking and Unblocking Signals
	Slide 27: Temporarily Blocking Signals
	Slide 28: Safe Signal Handling
	Slide 29: Guidelines for Writing Safe Handlers
	Slide 30: Async-Signal-Safety
	Slide 31: Safe Formatted Output: Option #1
	Slide 32: Safe Formatted Output: Option #2
	Slide 33: Correct Signal Handling
	Slide 34: Correct Signal Handling
	Slide 35: Synchronizing Flows to Avoid Races
	Slide 36: Synchronizing Flows to Avoid Races
	Slide 37: Corrected Shell Program without Race
	Slide 38: Explicitly Waiting for Signals
	Slide 39: Explicitly Waiting for Signals
	Slide 40: Explicitly Waiting for Signals
	Slide 41: Waiting for Signals with sigsuspend
	Slide 42: Waiting for Signals with sigsuspend
	Slide 43: Summary
	Slide 44: Unix I/O Overview
	Slide 45: Unix I/O Overview
	Slide 46: File Types
	Slide 47: Regular Files
	Slide 48: Directories
	Slide 49: Pathnames
	Slide 50: Opening Files
	Slide 51: Closing Files
	Slide 52: Reading Files
	Slide 53: Writing Files
	Slide 54: Simple Unix I/O example
	Slide 55: On Short Counts
	Slide 56: Home-grown buffered I/O code
	Slide 57: Today
	Slide 58: File Metadata
	Slide 59: How the Unix Kernel Represents Open Files
	Slide 60: How the Unix Kernel Represents Open Files
	Slide 61: File Sharing
	Slide 62: How Processes Share Files: fork
	Slide 63: How Processes Share Files: fork
	Slide 64: I/O Redirection
	Slide 65: I/O Redirection Example
	Slide 66: I/O Redirection Example (cont.)
	Slide 67: Warm-Up: I/O and Redirection Example
	Slide 68: Warm-Up: I/O and Redirection Example
	Slide 69: Master Class: Process Control and I/O
	Slide 70: Master Class: Process Control and I/O
	Slide 71: Today
	Slide 72: Standard I/O Functions
	Slide 73: Standard I/O Streams
	Slide 74: Buffered I/O: Motivation
	Slide 75: Buffering in Standard I/O
	Slide 76: Standard I/O Buffering in Action
	Slide 77: Standard I/O Example
	Slide 78: Today
	Slide 79: Today: Unix I/O, C Standard I/O, and RIO
	Slide 80: Unix I/O Recap
	Slide 81: The RIO Package (CS:APP Package)
	Slide 82: Unbuffered RIO Input and Output
	Slide 83: Implementation of rio_readn
	Slide 84: Buffered RIO Input Functions
	Slide 85: Buffered RIO Input Functions (cont)
	Slide 86: Buffered I/O: Implementation
	Slide 87: Buffered I/O: Declaration
	Slide 88: Standard I/O Example
	Slide 89: Today
	Slide 90: Standard I/O Example
	Slide 91: Unix I/O vs. Standard I/O vs. RIO
	Slide 92: Pros and Cons of Unix I/O
	Slide 93: Pros and Cons of Standard I/O
	Slide 94: Choosing I/O Functions
	Slide 95: Aside: Working with Binary Files
	Slide 96: Extra Slides
	Slide 97: Fun with File Descriptors (3)
	Slide 98: Accessing Directories
	Slide 99: Example of Accessing File Metadata

