

Andrew ID:

Full Name:

Hint: This is an old school handwritten exam. There is no authenticated login. If we can’t read

your AndrewID, we won’t easily know who should get credit for this exam. If we can’t read

either your AndrewID or Full Name, we’re in real bind. Please write neatly :-)

18-213/18-613, Spring 2024 Final Exam
Thursday, May 2, 2024

Instructions:

● Make sure that your exam is not missing any sheets (check page numbers at bottom)

● Write your Andrew ID and full name on this page (and we suggest on each and

every page)

● This exam is closed book and closed notes.

● You may not use any electronic devices or anything other than what we provide and

writing implements, such as pens and pencils.

● Write your answers in the space provided for the problem.

● If you make a mess, clearly indicate your final answer.

● The exam has a maximum score of 100 points.

● The point value of each problem is indicated.

● Good luck!

Problem

Scope Max
Points

Score

1 Data Representation: “Simple” Scalars: Ints and Floats 10

2 Data Representation: Arrays, Structs, Unions, and Alignment 10

3 Assembly, Stack Discipline, Calling Convention, and x86-64 ISA 15

4 Caching, Locality, Memory Hierarchy, Effective Access Time 15

5 Malloc(), Free(), and User-Level Memory Allocation 10

6 Virtual Memory, Paging, and the TLB 15

7 Process Representation and Lifecycle + Signals and Files 10

8 Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW 15

TOTAL Total points across all problems 100

Question 1: Representation: “Simple” Scalars (10 points)
Part A: Integers (5 points, 1 point per blank)

1(A)(2 points) How many bits would be needed to represent the decimal number 2037 as

a 2s complement signed number? Please assume that there are no constraints beyond

those given, e.g. don’t be concerned about alignment.

12 bits

negative bit plus….11 bits

1 3 7 15 31 63 127 255 511 1023 2047

1(B)(2 points) Please show the bit pattern present when the decimal number -27 is

represented as a 8-bit negative number.

-27 = -128 + 64 + 32 + 4 + 1

1 1 1 0 0 1 0 1

1(C)(2 points) Consider a 4-bit 2s complement signed “int”. What would be the output of

the following code:

 int x = -6;

 int y = -5;

 int z = -1;

 z = x + y;

 printf (“%d”, z); fflush(stdout)

-6 = -8 + 0 + 1 + 0 1010

-5 = -8 + 0 + 1 + 1 +1011

 0101

The output is “5”.

1(D)(2 points) Consider an 8-bit unsigned number. What is the greatest magnitude positive

number that can be represented?

1 1 1 1 1 1 1 1 = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

1(E)(2 points) What is the result if Tmin (the greatest magnitude negative number) is

added to Tmax (the greatest magnitude positive number)? Hint: Consider the usual signed

ints.

-1

1000 + 0111 = -1

1000 0000 + 0111 1111 = -1

2

etc

3

Question 1: Representation: “Simple” Scalars (10 points)

Part B: Floats (5 points, 1 point per blank)

For this problem, please consider a floating point number representation based upon an

IEEE- like floating point format as described below.

● Format:

○ There are 8 bits

○ There are n = 4 exponent bits.
○ Hint: bias = (2k-1 - 1)

Fill in the empty (non grayed-out) boxes as instructed.

Answer

Total Number of Bits
(Decimal)

8

Number of Exponent Bits
(Decimal) 4

Number of Fraction Bits

(Decimal) 3

Bias
(Decimal) 24-1 - 1 = 7

The maximum possible
difference between a Real
number and the corresponding
Float, to the nearest power of 2.
Consider only numbers within
the representative range
without the use of an infinity or
NaN.

Consider
 0 1110 000 vs 0 1110 001

1.001x 27 - 1.000 x 27

 = 2-3x27 /2 = 23 = 8

1 0000 010
(As a reduced decimal fraction)

negative, denorm
exp = 1 - 7 = -6
0.010 x 2-6
= -1.0x2-8
= - 1/256

How would the number below
be represented as closely as

possible? (Hint: Consider
round-even, answer in decimal

or as a decimal fraction)

-1 11/16 (-27/16)

-1 3/4 or -7/4
1.1011 x 20 is either

1.101 x27 or 1.110 x 27
and 1.110 x 27 is even

4

Question 2: Representation: Arrays, Structs, Unions, Alignment, etc. (10 points)

Please consider a “Shark” machine for all parts of this question: 1-byte chars, 2-byte shorts, 4-byte
ints, 8-byte longs, 8 byte doubles, 4 byte floats, and 8 byte doubles

Part A (3 points): Consider the following struct. How much memory is required? Answer in bytes.

struct {

 char c1;

 int i;

 char c2;

 short s;

 long l;

} examStruct1;

 24B: c1=1B + padding=3B + i=4B + c2=1B + padding=1B + s=2B + padding=4B + l=8B

Part B (2 points): How many bytes could be saved by reordering the fields of examStruct1?

struct {

 char c1;

 char c2;

 short s;

 int i;

 long l;

} examStruct1;

8 bytes of padding can be saved

Part C (3 points): Consider the following array. How far apart are the addresses of array[0][1] and
array[1][0]? Answer in bytes. Base your answer upon the struct in Part A.

 struct examStruct1 array[2][3];

 00 01 02

 10 11 12 ==> 00 01 01 10 11 12

 ^ ^
 2 structs apart @ 24 bytes/struct

5

 48 bytes apart

Part D (2 points): Consider “struct examStruct1 es1;”. What is the offset in bytes of es1.s

within the referenced struct.

 c1=1B + padding=3B + i=4B + c2=1B + padding=1B, then s starts.

 10 bytes
Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64 (15 points)

Part A: Calling Convention (4 points)

3(A)(1) (2 points): Consider the following code. How many bytes of the stack are used for parameter
passing upon the calling of the function, fun()?

#include <stdio.h>

void fun (char c, int x[], short s) {

 x[0] = 5;

 printf ("%c %d %d\n", c, x[0], s);

}

void main() {

 char c = 'a';

 int x[4] = {0, 1, 2, 3};

 short s = -1;

 fun (c, x, s);

 printf ("%c %d %d\n", c, x[0], s);

}

 0 bytes. Arrays are passed by reference, so all arguments are passed via registers.

3(A)(2) (2 points): Consider the following code. How many bytes of the stack are used for parameter
passing upon the calling of the function?

#include <stdio.h>

struct sstruct {

 int x;

 int y;

};

void fun (char c, struct sstruct s, int i) {

 s.x = 5;

 printf ("%c %d %d\n", c, s.x, i);

}

void main() {

 char c = 'a';

 struct sstruct s = {1,2};

 int i = -1;

6

 fun (c, s, i);

 printf ("%c %d %d\n", c, s.x, i);

}

8 Bytes The struct is passed via the stack, everything else is passed via registers.

Question 3: Assembly, Stack Discipline, Calling Convention, and x86-64, cont. (15 points)
Part B: Conditionals and Loops (5 points)

Consider the following code:

Dump of assembler code for function loop:

 0x00000000000011ad <+0>: endbr64

 0x00000000000011b1 <+4>: push %r14

 0x00000000000011b3 <+6>: push %r13

 0x00000000000011b5 <+8>: push %r12

 0x00000000000011b7 <+10>: push %rbp

 0x00000000000011b8 <+11>: push %rbx

 0x00000000000011b9 <+12>: mov %edi,%r13d #%edi is 1st arg

 0x00000000000011bc <+15>: mov %esi,%ebp #%esi is 2nd arg

 0x00000000000011be <+17>: mov %edx,%r12d #%edx is 3rd arg

 0x00000000000011c1 <+20>: cmp %esi,%edi

 0x00000000000011c3 <+22>: jge 0x1204 <loop+87>

 0x00000000000011c5 <+24>: mov %edi,%ebx

 0x00000000000011c7 <+26>: lea 0xe36(%rip),%r14 # 0x2004

 0x00000000000011ce <+33>: jmp 0x11d7 <loop+42>

 0x00000000000011d0 <+35>: add %r12d,%ebx

 0x00000000000011d3 <+38>: cmp %ebx,%ebp

 0x00000000000011d5 <+40>: jle 0x1204 <loop+87>

 0x00000000000011d7 <+42>: call 0x1090 <rand@plt>

 0x00000000000011dc <+47>: test %eax,%eax

 0x00000000000011de <+49>: jg 0x1204 <loop+87>

 0x00000000000011e0 <+51>: call 0x1090 <rand@plt>

 0x00000000000011e5 <+56>: test %eax,%eax

 0x00000000000011e7 <+58>: jg 0x11d0 <loop+35>

 0x00000000000011e9 <+60>: mov %r12d,%r8d

 0x00000000000011ec <+63>: mov %ebp,%ecx

 0x00000000000011ee <+65>: mov %ebx,%edx

 0x00000000000011f0 <+67>: mov %r14,%rsi

 0x00000000000011f3 <+70>: mov $0x1,%edi

 0x00000000000011f8 <+75>: mov $0x0,%eax

 0x00000000000011fd <+80>: call 0x1080 <__printf_chk@plt>

 0x0000000000001202 <+85>: jmp 0x11d0 <loop+35>

 0x0000000000001204 <+87>: mov %r12d,%r8d

 0x0000000000001207 <+90>: mov %ebp,%ecx

 0x0000000000001209 <+92>: mov %r13d,%edx

 0x000000000000120c <+95>: lea 0xdf1(%rip),%rsi # 0x2004

 0x0000000000001213 <+102>: mov $0x1,%edi

 0x0000000000001218 <+107>: mov $0x0,%eax

 0x000000000000121d <+112>: call 0x1080 <__printf_chk@plt>

 0x0000000000001222 <+117>: pop %rbx

 0x0000000000001223 <+118>: pop %rbp

 0x0000000000001224 <+119>: pop %r12

 0x0000000000001226 <+121>: pop %r13

 0x0000000000001228 <+123>: pop %r14

 0x000000000000122a <+125>: ret

End of assembler dump.

7

Hint: Please be careful to understand the code. Answering these questions isn’t as simple as
counting forward or backward jumps.

Continued on next page.

8

3(B)(1) (2 points): Consider well-written C Language code. Is the loop shown above most
representative of a while () {…., a do { … } while(), or a for {} loop? How do you

know?

 For loop the arguments given provide the start, stop, and increment values, which are

then copied to other registers and used for that purpose. See for example: +35, +38, and
+40.

3(B)(2) (1 points): Are there any ‘break’ statements in the loop? If so, at what line is/are the
associated jump(s)? Give the line number(s) in the form <+23> or <+27> or, more generally,
<+line_no>

 .

Yes. 1. See +47, +49, and +51.

3(B)(3) (1 points): Are there any ‘continue’ statements in the loop? If so, at what line is/are the
associated jump(s)? Give the line number(s) in the form <+23> or <+27> or, more generally,
<+line_no>

 .

Yes. 1. See +51, +56, and +58

3(B)(4) (1 points): How many ?-operators (ternary operators) are there? Explain your answer.

 None. There are no conditional moves.

Continued on next page.

9

Part C: Switch statement (6 points)

Consider the following compiled from C Language code containing a switch statement and no if
statements. It uses a very common form of the switch statement on the shark machines, but a slightly
different one than some prior exams. Rather than keeping absolute addresses, this jump table keeps
offsets from its own start address. The address of each code block is the address of the
beginning of the jump table plus the value of the code block’s jump table entry. You’ll see this
add before the relevant jump in the assembly. It might make things easier for you to note the address
indicated by the lowest jump table entry and think of the other entries relative to that one.

Dump of assembler code for function foo:

 0x0000555555555169 <+0>: endbr64

 0x000055555555516d <+4>: cmp $0xa,%esi

 0x0000555555555170 <+7>: ja 0x5555555551ad <foo+68>

 0x0000555555555172 <+9>: mov %esi,%eax

 0x0000555555555174 <+11>: lea 0xe89(%rip),%rdx # %rdx = 0x555555556004

 0x000055555555517b <+18>: movslq (%rdx,%rax,4),%rax # Note that if ($rax == -3671) here

 0x000055555555517f <+22>: add %rdx,%rax, # %rax = 0x00005555555551ad here

=> 0x0000555555555182 <+25>: notrack jmp *%rax # It may help to think about the

 0x0000555555555185 <+28>: lea 0xa(%rdi),%eax # delta from the above address and

 0x0000555555555188 <+31>: ret # offset

 0x0000555555555189 <+32>: lea 0x0(,%rdi,4),%eax

 0x0000555555555190 <+39>: ret

 0x0000555555555191 <+40>: add $0x2,%edi

 0x0000555555555194 <+43>: movslq %edi,%rsi

 0x0000555555555197 <+46>: imul $0x55555556,%rsi,%rsi

 0x000055555555519e <+53>: shr $0x20,%rsi

 0x00005555555551a2 <+57>: sar $0x1f,%edi

 0x00005555555551a5 <+60>: mov %esi,%eax

 0x00005555555551a7 <+62>: sub %edi,%eax

 0x00005555555551a9 <+64>: ret

 0x00005555555551aa <+65>: sub $0x1,%edi

 0x00005555555551ad <+68>: lea (%rdi,%rsi,1),%eax

 0x00005555555551b0 <+71>: ret

End of assembler dump.

Consider also the following memory dump.

(gdb) x/16lx 0x555555556004

0x555555556004: 0xfffff1a9 0xfffff181 0xfffff185 0xfffff18d

0x555555556014: 0xfffff1a9 0xfffff190 0xfffff1a9 0xfffff1a9

0x555555556024: 0xfffff1a9 0xfffff1a6 0xfffff1a6 0x000a6425

0x555555556034: 0x3b031b01 0x00000038 0x00000006 0xffffefec

(gdb) x/16d 0x555555556004

0x555555556004: -3671 -3711 -3707 -3699

0x555555556014: -3671 -3696 -3671 -3671

0x555555556024: -3671 -3674 -3674 680997

0x555555556034: 990059265 56 6 -4116

Commented [1]: Case 1

Commented [2]: Case 2

Commented [3]: Case 3

Commented [4]: Case 5

Commented [5]: Case 9, 10

Commented [6]: Default case, cases 0, 4, 6, 7, 8

10

Continued on next page.

Part C: Switch statement, cont. (6 points)

(3)(C)(1) (2 point): At what address does the jump table shown above begin? How do you

know?

0x555555556004 This is the address that is used as the base in +18

(3)(C)(2) (2 points): Is there a default case? If so, at what address does it begin? How do

you know?

0x5555555551ad See +4 and +7. it goes there for negative inputs and inputs above

10 (i.e. 0xa)

(3)(C)(3) (2 points): Which case(s), if any, fall through to the next case after executing some of their
own code? How do you know?

Hint: Give the case number not the address.

Yes.

Case 3 (-3699) falls through to case 5. It does the add at +40 before falling down to +43, which is
the address of case 5 (-3696).

Cases 9 and 10 fall through to the default case. (+65 to +68)

11

Continued on next page.
Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)
Part A: Caching (12 points)

Given a model described as follows:

● Associativity: 2-way set associative

● Total size: 128 bytes (not counting metadata)

● Block size: 32 bytes/block

● Replacement policy: Set-wise LRU

● 8-bit addresses

4(A)(1) (1 point) How many bits for the block offset?

 5. 25 = 32 bits 00000 - 11111 = 0 - (16+8+4+2+1 = 31)

4(A)(2) (1 point) How many bits for the set index?

 128 bytes / (32 bytes/block) = 4 blocks; 4 blocks / (2 blocks/set) = 2 sets
 2 sets need 1 bits for the set index

4(A)(3) (1 point) How many bits for the tag?

8 bits - 5 offset bits - 1 set bits = 2 tag bits

4(A)(4) (12 points): For each of the following addresses, please indicate if it hits, or misses, and

if it misses, the type of miss:

Address Circle one (per
row):

Circle one (per
row):

0xA1 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xE1 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xA2 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x21 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xE2 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x81 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xC1 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x22 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x61 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x41 Hit Miss Capacity Compulsory/Cold Conflict N/A

0x82 Hit Miss Capacity Compulsory/Cold Conflict N/A

0xC2 Hit Miss Capacity Compulsory/Cold Conflict N/A

12

Continued on next page

Question 4: Caching, Locality, Memory Hierarchy, Effective Access Time (15 points)

Part B: Memory Hierarchy and Effective Access Time (3 points)

Imagine a computer system as follows:

● 2-level memory hierarchy (L1 cache, Main memory)
● L1: 10% miss rate
● Main memory: 50nS access time, 0% miss rate
● Memory accesses at different levels of the hierarchy do not overlap

FOR SIMPLICITY, AVOID COMPLEX CALCULATION AND LEAVE YOUR ANSWER AS A

SIMPLE FRACTION

What L1 cache access time is required for the overall effective memory access time to be

15nS? Show your work.

 15ns = x + 0.1 * 50ns

 15ns = x + 5ns

 10ns = x

 x = 10ns

13

Continued on next page.

14

Question 5: Malloc(), Free(), and User-Level Memory Allocation (10 points)

Part A (2 points): When implementing the implicit list, you added a footer to each block. What
operation required this addition and why?

Constant-time coalesce, so it could coalesce both left and right. The footer served as an
implicit prev pointer for the successor block

Part B (2 points): When implementing implicit lists you were able to include an allocated/free bit, as
well as possibly other status bits, without extending the size of the header, footer, or block overall. How
were you able to do this and why didn’t that cause other problem(s)?

The status bits were encoded by Xor into the low order bit(s) of the size. This worked
because a minimum size was required for alignment, and possibly also by policy, so
these bits for size purposes would always be zero and could be recovered by masking
them.

Part C (2 points): If you got far enough in malloc lab (we talked about it even if you didn’t), you were
able to, in some cases, remove the footer from blocks in the implicit list. Under what circumstances
could this be done, and why?

The footer could be removed from allocated blocks because allocated blocks can’t be
coalesced and coalescing is the only operation that required the implicit prev pointer
provided by the footer.

Part D (2 points): After implementing the implicit list allocator, you augmented it to also provide explicit
prev and next pointers. What biggest advantage was enabled by this, even before getting to segregated
lists?

These pointers allow one to traverse only the unallocated blocks within the list. This can
be much faster than needing to traverse all blocks, including allocated blocks. It is also
true that these pointers enabled the list to be organized in different ways, but this benefit
was smaller, at least until we got to segregated lists.

Part E (2 points): After implementing explicit lists, you organized them into a segregated list allocator.
What was the biggest advantage was provided by this approach?

By organizing the free blocks into size classes, it made it possible to consider only
blocks that were more likely to be an appropriate size, rendering moot the need to do
things such as search for the best fit.

15

6. Virtual Memory, Paging, and the TLB (15 points)

This problem concerns the way virtual addresses are translated into physical

addresses. Imagine a system has the following parameters:

● Virtual addresses are 12 bits wide.

● Physical addresses are 12 bits wide.

● The page size is 16 bytes.

● The TLB is 2-way set associative with 8 total entries.

● The TLB may cache invalid entries

● TLB REPLACES THE ENTRY WITH THE LOWEST TAG (NOT LRU)

● A single level page table is used

Part A: Interpreting addresses (3 points)

6(A)(1)(1 points): Please label the diagram below showing which bit positions are

interpreted as each of the VPO (label as O) and VPN (Label as N). Leave any unused entries

blank.

Bit 11 10 9 8 7 6 5 4 3 2 1 0

VPN/
VPO

N N N N N N N N O O O O

6(A)(2)(1 points): Please label the diagram below showing which bit positions are interpreted

as each of the TLBI (Label as I) and TLBT (Label as T). Leave any unused entries blank.

6(A)(3)(1 points): How many entries exist within each page table?

 8-bit virtual page numbers range from 00000000 to 11111111 for 28= 256 pages.

6(A)(4) (2 points): How many sets are in the TLB?

 8 total entries/(2 entries/set) = 4 sets

Virtual Memory, Paging, and the TLB (15 points)

Bit 11 10 9 8 7 6 5 4 3 2 1 0

TLBI/
TLBT

T T T T T T I I X X X X

16

Part B: Hits and Misses (12 points)
● Shown below are the initial states of the TLB and page table.
● You may assume any entry not shown for the page table is not valid.
● We will grading only the trace, but you probably want to annotate the TLB and Page

Table tables as you go to stay organized.

TLB

X=Invalid (for read or write, regardless of those bits), V=VALID, R=READ, W=WRITE:

Set Tag PPN BITS Additional scratch space for you

 X Set 0: 0-1,4 –>1-7,8 1-2 –> 3-6

 X
Set 1: 2-3,5

 X Notation:

 X Tag-Time,Time,Time,...

 X x → y x replace by y

 X

 X

 X

Page Table

X=Invalid (for read or write, regardless of those bits), V=VALID, R=READ, W=WRITE:

Index/VPN PPN BITS Scratch space for you

0x00 7 V-RW

0x04 11 V-RW

0x0A 100 V-R

0x0C 20 X-RW

17

Continued on next page.

18

Part B: Hits and Misses, cont. (12 points)

Consider the following memory access trace e.g. sequence of memory operations

listed in order of execution, as shown in the first two columns (operation, virtual

address). It begins with the TLB and page table in the state shown above.

Note: N/A or Not knowable means the choices do not apply or there is not enough

information given. If you can not deduce a PPN from the information given, please

write N/A for “PPN If Knowable”

Please complete the remaining columns

Subpart Operation Virtual Address TLB
Hit or Miss?

Page Fault?

Yes or No?

PPN, if Knowable

Or, “Not knowable”

1 R 0x00A Hit Miss Yes No 7

2 W 0x041 Hit Miss Yes No 11

3 W 0x0AB Hit Miss Yes No 100

4 W 0x000 Hit Miss Yes No 7

5 R 0x0A2 Hit Miss Yes No 100

6 R 0x0CC Hit Miss Yes No Not knowable

7 W 0x042 Hit Miss Yes No 11

8 R 0x041 Hit Miss Yes No 11

19

Continued on next page.

20

Question 7: Process Representation and Lifecycle + Signals and Files (10 points)

Part A (4 points):

Please consider the following code:

void main(){

 printf ("A"); fflush(stdout);

 if (!fork()) {

 printf ("B"); fflush(stdout);

 if (!fork()) {

 printf ("C"); fflush(stdout);

 }

 printf ("D"); fflush(stdout);

 }

 printf ("E"); fflush(stdout);

}

7(A)(1) (2 points): Draw the process graph, using the same notation we did in class, for the code
above.

z

7(A)(2) (1 points): Give one valid output for the program above.

AEBDECDE

7(A)(3) (1 points): Give one invalid output for the program above that has an ordering problem involving
B, C, and/or D.

 AEBDECED

Continued on next page.

21

Question 7: Process Representation and Lifecycle + Signals and Files, cont. (10 points)

Part B (6 points):

Please consider the following code:

int main(int argc, char* argv[]) {

 char buffer[7] = "abcdef";

 char buffer2[7];

 // Assume "file.txt" is initially non-existent or empty.

 int fd0 = open("file.txt", O_RDWR | O_CREAT, 0666);

 int fd1 = 10;

 write(fd0, buffer, 2);

 dup2 (fd0,fd1); // int dup2(int oldfd, int newfd); copies oldfd over newfd

 write(fd1, buffer, 2);

 if (!fork()) {

 write(fd1, "P", 1);

 write(fd0, buffer+3, 3);

 fd1 = open("file.txt", O_RDWR | O_CREAT, 0666);

 write(fd1, "X", 1);

 write(fd0, "A", 1);

 } else {

 wait(NULL);

 write(fd1, "C", 1);

 write(fd0, buffer, 3);

 }

 return 0;

}

7(B)(1) (2 points): What is the content of the output file after this code completes?

 XbabPdefACabc

 7(B)(2) (2 points): If the child process was just about to “return 0”, how many entries are there in the
system-wide open file table related to this code (ignore stdin, stdout, stderr), assuming open file table
garbage collection is done only when program terminates?

Two. One open() in the parent and one open() in the child. There has been one

 open at this point in time. Forks don’t create new file table entries.

7(B)(3) (2 points): Ignoring stdin, stdout, and stderr, what is the greatest number of file

descriptor table entries in use at one time across all parent and child process(es)?

 Five. The parent opens one, the dup2s one, the child gets copies of these

(2+2 = 4), then the child opens another (4 + 1 = 5). It doesn’t matter that the local

variable name used to hold the returned fd in the child is also fd1. It just matters

that the open created a new one.

Continued on next page.

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW (15 points)

22

Part A (6 points): Correct

Consider the following C code. Assume that both threads have been spawned and are running
concurrently.

8(A) Code

1. // Based upon:

2. // Harris Hyman, "Comments on a problem in concurrent programming control",

3. // Communications of the ACM, v.9 n.1, p.45, Jan. 1966.

4.

5. int flag[2] = {0,0};

6. int turn = 0;

7. int counter = 0;

8.

9. void *threadMain (void *arg) {

10. int i = (int) arg;

11.

12. while (1) { // Main work loop

13.

14. flag[i] = 1; // Indicate this thread wants access to critical section

15.

16. while (turn != i) { // While it isn't this thread's turn

17. while (flag [1-i] == 1) // While the other thread is using the critical section

18. ; // Just spin

19.

20. turn = i; // Claim this thread's turn, excluding other thread

21. }

22.

23. // Critical section

24. counter++;

25.

26. // Release critical section, allowing the other thread to claim critical section

27. flag[i] = 0;

28.

29. } // Back to the top of the main work loop

30. }

31.

32. void main() {

33. pthread_t thread0, thread1;

34. int ret0, ret1;

35.

36. ret0 = pthread_create(&thread0, NULL, threadMain, (void*) 0);

37. ret1 = pthread_create(&thread1, NULL, threadMain, (void*) 1);

38.

39. return (ret0 + ret1) // 0 on pthread_create() success, non-zero on pthread_create() fail

40. }

8(A)(1) (3 points) Consider the code above. In thinking about it you might consider the following
initial sequence of events and imagine what might come next:

● Imagine that the 0th thread is dispatched first and executes through the end of line 17
before the scheduler preempts it

● Imagine then that the 1st thread runs through line 24.

Continued on next page.

8(A)(1) (1 point; 2 points) Does the above code provide correct concurrency control for the

23

identified critical section? Circle either “Yes” or the type of violation:

 Yes

 Deadlock

 Race

 Starvation

 Other type of Progress violation

8(A)(2) (2 points → 4 points) If this code provides correct concurrency control, please explain how
the critical section is protected. If not, please illustrate, using line numbers, a violation and explain
the nature and cause of the violation.

IRace: Thread 1 first can get to line 19 because at this point turn is 0 (not 1) and flag[0] is
not on yet. Then before thread 1 can change turn, thread 0 executes and it can skip the
entire outer while (turn != i) loop because turn is still 0. Only after this does thread 1 change
the turn variable to 1 and now both threads are executing the critical section of code
concurrently.

Starvation: A thread could quickly change flag[i] to 0 and 1 (lines 27 and 14) and because it
isn’t marked as volatile, the other thread could get stuck on line 17 and think the flag is
always set.

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW, cont. (15 pts)

Part B (9 points): Concurrency Control

Consider a situation in which a threaded network server accept()s connections from clients and stages
them for handling by a fixed-sized pool of worker threads, which in turn interact with the client.

To stage a connection for handling by a thread, the server places the file descriptor of the accept()ed
client session into the element of an array associated with an available worker thread and
signals/wakes-up the worker thread using a concurrency control primitive.

If all worker threads are busy, the server needs to wait before staging the work and looping back to
accept() more client connections.

Your task is to complete the C-like pseudocode code that follows, maximizing concurrency while

enduring correctness and approximate fairness. What is provided is just just pseudocode. Don’t let

details unrelated to the concurrency control problem distract you. Read the provided code and

comments: They are very important.

The only concurrency control primitive available is the semaphore type as shown below:

● sem_t // The data type for a semaphore

● sem_init (sem_t, unsigned int initial_value)

● sem_p(sem_t)

● sem_v(sem_t)

24

Continued on next page.

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW, cont. (15 pts)
Part B (9 points): Concurrency Control, cont.

#define NUM_WORKER_THREADS 5

#define AVAILABLE -1

int connections[NUM_WORKER_THREADS] =

 { AVAILABLE, AVAILABLE, AVAILABLE, AVAILABLE, AVAILABLE };

// Declare any variables you want, including semaphores, and perform any

// initialization you want here

// Hint: You can use arrays of semaphores.

sem_t bufferLock;

sem_t availableSem;

sem_t ready[NUM_WORKER_THREADS];

sem_init(buffer_lock, 1);

sem_init(availableSem,NUM_WORKER_THREAD);

for (int index=0; index < NUM_WORKER_THREADS; index++)

 sem_init(ready[index],1);

// There is just one of these in the whole process. It accepts new connections and

// hands them off to threads

int serverMain (int sockfd) {

 int clientfd;

 while (clientfd = accept(sockfd, NULL, NULL) 0 {

 // Write code here that causes the server to place the connection with an

 // available worker and to wait until one is available, if none are available

 sem_P(availableSem); // This should really be before the accept, but…

 sem_P(buffer_lock);

 for (int index=0; index<NUM_WORKER_THREADS; index++)

 if (ready[index] == AVAILABLE]) break;

 ready[availableSem] = clientfd;

 sem_V(buffer_lock);

 }

}

25

Continued on next page.

Question #8: Concurrency Control: Maladies, Semaphores, Mutexes, BB, RW, cont. (15 pts)
Part B (9 points): Concurrency Control, cont.

// This is the body of each individual client worker thread. It interacts with

// a client it is given via a file descriptor in the connections[] array

// There are NUM_WORKER_THREAD of these threads within the process

// Each has a unique threadID from 0 – (NUM_WORKER_THREAD -1)

int clientThreadMain(int myThreadID) {

 while (1) {

 // Do anything you needed for concurrency control before interacting

 // with the client here.

 // This function does all of the interaction with the assigned client

 interactWithClient(connections[myThreadID];)

 // Do anything needed for concurrency control after interacting with the

 // client and before marking self as available for another client here

 // Mark self as available for another client session

 sem_P(buffer_lock);

 ready[myThreadID] = AVAILABLE;

 sem_V(buffer_lock);

 // Do anything needed for concurrency control after

 // marking self as available for another client and before looping back to

 // start over waiting for and handline a new client here.

 sem_V(availableSem);

 }

}

26

The end! Exam done! Good work!

