
Bingo Spatial Data Prefetcher

Mohammad Bakhshalipour†‡ Mehran Shakerinava† Pejman Lotfi-Kamran‡ Hamid Sarbazi-Azad†‡

†Department of Computer Engineering, Sharif University of Technology
‡School of Computer Science, Institute for Research in Fundamental Sciences (IPM)

Abstract—Applications extensively use data objects with a
regular and fixed layout, which leads to the recurrence of
access patterns over memory regions. Spatial data prefetching
techniques exploit this phenomenon to prefetch future memory
references and hide the long latency of DRAM accesses. While
state-of-the-art spatial data prefetchers are effective at reducing
the number of data misses, we observe that there is still
significant room for improvement. To select an access pattern
for prefetching, existing spatial prefetchers associate observed
access patterns to either a short event with a high probability of
recurrence or a long event with a low probability of recurrence.
Consequently, the prefetchers either offer low accuracy or lose
significant prediction opportunities.

We identify that associating the observed spatial patterns
to just a single event significantly limits the effectiveness of
spatial data prefetchers. In this paper, we make a case for
associating the observed spatial patterns to both short and long
events to achieve high accuracy while not losing prediction
opportunities. We propose Bingo spatial data prefetcher in
which short and long events are used to select the best access
pattern for prefetching. We propose a storage-efficient design
for Bingo in such a way that just one history table is needed to
maintain the association between the access patterns and the
long and short events. Through a detailed evaluation of a set
of big-data applications, we show that Bingo improves system
performance by 60% over a baseline with no data prefetcher
and 11% over the best-performing prior spatial data prefetcher.

Keywords-Big-Data Applications, Memory System, Data
Prefetching, Spatial Correlation.

I. INTRODUCTION

The long-latency off-chip memory accesses are a well-

known performance bottleneck for many big-data applica-

tions. Due to the mismatch between the speed of a processor

and the off-chip memory, the processor can easily get stalled

for hundreds of cycles upon each DRAM access, losing sig-

nificant performance potentials. Today’s highly-speculative

and deeply-pipelined out-of-order processors can, at best,

tolerate primary data cache misses, and incur considerable

performance penalties upon off-chip memory accesses [1],

[2], [3], [4], [5], [6], [7].

Traditionally, processor designers have increased the ca-

pacity of on-chip caches to improve the hit ratio and reduce

the number of off-chip accesses. Such an approach, however,

is less applicable to today’s processors as it causes the cache

hit latency to increase [3], [8], [9], [10]. Moreover, using the

silicon real estate to increase the number of cores is more

beneficial than enlarging caches [3], [8], [9]. Finally, the

continual growth of the datasets of applications (e.g., graph

processing and machine learning) have led to data sets of

hundreds of gigabytes or even a few terabytes; several orders

of magnitude larger than the largest possible cache on the

active die.

System architects have used various tools to bridge the

processor-memory performance gap. Data prefetching is one

of these tools that has demonstrated great potential for

mitigating the latency of cache misses [11], [12], [13]. Data

prefetching is the act of predicting future memory accesses

and fetching those that are not in the cache before the pro-

cessor explicitly asks for them, to hide the long delay of off-

chip accesses. Nowadays, almost every high-performance

processor uses data prefetching (e.g., Intel Xeon Phi [14],

AMD Opteron [15], and UltraSPARC III [16]), targeting

regular and/or irregular memory access patterns.

Spatial data prefetchers predict future memory accesses

by relying on spatial address correlation: the similarity of

access patterns among multiple pages1 of memory. That is,

if a program has visited locations {X,Y, Z} of Page A,

it is likely to touch the {X,Y, Z} locations of the same

or similar pages in the future. Access patterns demonstrate

spatial correlation because applications use data objects with

a regular and fixed layout, and accesses reoccur when data

structures are traversed [17], [18].

Whenever an application requests a page, spatial data

prefetchers (e.g., [18], [19], [20], [21]) observe all accesses

to the page, and record a footprint, indicating which blocks

of the page are used by the application. Then they assign the

footprint to an event and store the 〈event, footprint〉 pair in

a history table, in order to use the recorded footprint in the

future, whenever the event reoccurs. The event is usually

extracted from the trigger access, i.e., the first access to

the page2. Upon the recurrence of the same event, spatial

prefetchers use the recorded footprint to prefetch future

memory references of the currently requested page.

Spatial data prefetchers, as compared to other types of

data prefetchers, e.g., temporal data prefetchers [22], [23],

[24], [25], [26], [27], [28], require orders of magnitude

1Here, a page is a chunk of contiguous cache blocks in the memory,
holding several kilobytes of data. Such a page is not necessarily the same
as an OS page or a DRAM page, in neither nature nor size.

2For example, the Program Counter (PC) of the instruction that requests
the page for the first time can be an event to which a footprint is assigned.

399

2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/19/$31.00 ©2019 IEEE
DOI 10.1109/HPCA.2019.00053

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

less storage for metadata. Moreover, spatial prefetchers

can prefetch performance-critical compulsory misses (i.e.,

unseen cache misses) by generalizing access patterns learned

from similar pages to new unobserved pages, thereby sig-

nificantly improving system performance. Finally, as recent

work showed [29], not only do spatial prefetchers increase

the performance by decreasing the number of off-chip

accesses, but also they improve memory system energy-

efficiency by reducing the number of energy-hungry DRAM

row activations.

Traditionally, miss coverage, i.e., the fraction of cache

misses eliminated by the prefetcher, was the single pri-

mary consideration in the design of prefetchers. As such,

prefetchers have grown in their ability to eliminate cache

misses, while other factors such as storage efficiency and

prefetching accuracy have been marginalized. Nonetheless,

with the widespread use of multi-core processors, other

factors like storage requirement and prefetching accuracy

are becoming increasingly important. The storage overhead

of hardware optimizers, like prefetchers, should be minimal;

otherwise, it might be beneficial to eliminate the optimizer

and dedicate its silicon real estate to further increase the

number of cores [30]. Prefetching accuracy has also become

critical because high core count has driven the designs into

the memory bandwidth wall, mainly because of poor pin

count scalability [31], [32], [33], [34], [35], [36]. Therefore,

prefetchers should be highly accurate to efficiently use the

limited bandwidth of DRAM modules [37], [38], [39], [40],

[41]. Out of the two, prefetch accuracy is of more importance

than storage efficiency as designs usually hit the bandwidth

wall first [8], [9], [42], [43].

Inspired by TAGE [44], a state-of-the-art branch predictor,

many pieces of recent work improved the efficiency of

predictor-based hardware optimizers using multiple cas-
caded history tables3. In this strategy, instead of relying on

a single history table to predict future events (Figure 1-(a)),

several history tables, each with specific information, are

used to make predictions (Figure 1-(b)). These tables hold

the history of long and short events. Long events refer to

the coincidence of several specific incidents. For example,

“accessing the 3rd cache block of page P2 with instruction

I5” may be considered a long event (a coincidence of

three incidents). Short events, on the other hand, refer

to the coincidence of few specific incidents. For example,

“execution of instruction I5” may be considered a short event

(just one incident).

Each of the multiple cascaded history tables in TAGE-

like predictors stores the history of events with a specific
length and offers a prediction of what will happen after the
stored event. The predictions made based on long events are

expected to have high accuracy; however, the probability

3The TAGE branch predictor itself is inspired by prior work [45] on
data compression, which studies predictability limits.

Ev
en

t

… …

Event Pred.
E1
E2

P1
P2

Prediction

Ev
en

t

… …
Event Pred.

E1, E2, E3
E2, E3, E4

P1
P2

Prediction

Look up with a different event

Event

… …

Event Pred.
E1
E2

P1
P2

Prediction … …
Event Pred.
E1, E2
E2, E3

P1
P2

Prediction … …

Event Pred.
E1, E2, E3 P1

P2

Prediction

E2, E3, E4

(a) Baseline (c) Bingo

(b) Prior TAGE-Like Predictors

Figure 1. Comparison of proposals for predictor-based hardware optimiz-
ers.

of a long event recurring is low. Therefore, if a predictor

only relies on a history of long events, it can rarely make

a prediction (but when a prediction is made, it is highly

accurate). On the contrary, short events have a high chance

of recurrence, but predictions based on them are not expected

to be as accurate as the predictions based on long events. To

get the best of both worlds, TAGE-like predictors record the

history of both long and short events. Whenever there is a

need for a prediction, they check the history tables, logically

one after another; they start from the longest history table

(most accurate but least recurring) to make a prediction. If

a prediction cannot be made, they switch to the next-longest

history table and repeat the process. This process enables

the predictor to predict as accurately as possible while not

losing the opportunity of making a prediction.

Many pieces of prior work demonstrated great potential

by using a TAGE-like strategy to improve the efficiency

of various predictor-based hardware optimizers. A TAGE-

like strategy is used for branch prediction [46], [47], [48],

data prefetching [28], [49], [50], data value prediction [51],

[52], [53], memory dependency prediction [54], [55], cache

hit/miss prediction [56], quality prediction in approximate

computing [57], prediction-based DRAM scheduling [58],

and instruction type prediction [59].

In this paper, we leverage this idea in the context of spatial

data prefetching and propose Bingo, an efficient mechanism

to identify and prefetch spatially-correlated data accesses.

Bingo, like prior approaches (e.g., [17], [18], [19], [20],

[21]), stores the footprint of each page as the metadata,

but unlike them, associates each footprint to more than
one event. Whenever the time for prefetching comes (i.e.,

a triggering access occurs), Bingo finds the footprint that is

associated with the longest occurred event. As such, Bingo
issues accurate prefetch requests without losing prefetch

opportunities, proactively supplying the processor with the

requested data.

A naive implementation of Bingo requires dedicating

400

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

multiple history tables to the prefetcher to keep the metadata.

In such an implementation, whenever a footprint needs

to be stored, it is inserted into all metadata tables and

assigned to events with different lengths in each table.

This approach, which has been adopted by prior TAGE-like

predictors, imposes significant area overhead, as is evident

from Figure 1-(b). We observe that, in the context of spatial

data prefetching, a significant fraction of the metadata stored

in the cascaded TAGE-like tables is redundant. To effectively

eliminate the redundancies, we propose an elegant solution

to consolidate the metadata of all history tables into a single

unified table. With the proposed implementation, a single
history table is looked up multiple times, each time with
a different event to find the prediction associated with the

longest event (Figure 1-(c)). By organizing the metadata in

a single history table, we significantly reduce the storage

requirements of Bingo.

In this paper, we make the following contributions:

• We show that relying on a single event to issue prefetch

requests is a major source of inefficiency in state-of-the-

art spatial data prefetchers.

• We propose a TAGE-like predictor to accurately and

maximally extract spatially-correlated data access pat-

terns.

• We suggest a scheme to consolidate multiple history

tables into a single unified metadata table, significantly

reducing the storage requirements.

• Putting all together, we propose a spatial data

prefetcher, named Bingo, and meticulously evaluate it

for various big-data applications. We show that our

proposal improves the system performance by 60%

on average and up to 285% over a baseline with

no prefetcher. Meanwhile, it outperforms the best-

performing prior spatial data prefetcher by 11% on

average and up to 67%.

II. BACKGROUND

Modern big-data applications have vast datasets that dwarf

capacity-limited caches and reside in memory. Therefore,

processors executing these workloads encounter frequent

cache misses that stall the cores, causing a significant

performance loss [3], [4], [28], [34], [60], [61]. Spatial

data prefetchers [18], [19], [20], [21], [50], [62], [63], [64],

[65], [66] reduce the number of cache misses by prefetching

future memory references based on the similarity of access

patterns among memory pages.

Spatial data prefetching has long been considered effective

due to the unique intrinsic features that it offers. First, spatial

prefetchers, as compared to other types of data prefetchers,

e.g., temporal data prefetchers [22], [23], [24], [25], [26],

[27], [28], require orders of magnitude less storage for

keeping metadata information. Unlike temporal prefetchers,

spatial prefetchers need to store only an offset (i.e., the

distance of a block address from the beginning of a page)

or a delta (i.e., the distance of two consecutive accesses that

fall into a page) and are not required to store the full address.

As a result, they need significantly less storage for storing

the metadata. Moreover, in spatial prefetching, the order of

accesses inside the page boundaries is of less importance,

and as such, it is not required to record intra-page access

order, which further reduces the storage requirement. As

the memory pages on which spatial prefetchers train and

prefetch are usually smaller than or equal to a DRAM row

(e.g., 1–2 KB as compared to 2–8 KB), all prefetch requests

sent along with the trigger access enjoy a row buffer hit, and

hence, all of them are rapidly fetched and cached inside

the last-level cache (LLC), downplaying the impact of fetch

order [29].

Another equally remarkable strength of spatial data

prefetchers is their ability to eliminate compulsory cache

misses. Compulsory cache misses are a major source of

performance degradation in important classes of applica-

tions, e.g., scan-dominated workloads, where scanning large

volumes of data produces a bulk of unseen memory accesses

that cannot be captured by caches [67]. By utilizing the

pattern that was observed in a past page to a new unobserved

page, spatial prefetchers can alleviate the compulsory cache

misses, significantly enhancing system performance.

Finally, an accurate spatial data prefetcher improves not

only performance but also memory subsystem energy usage.

Spatial data prefetchers have the opportunity to increase

the DRAM row buffer hit ratio, by precisely predicting

expected-to-be-used cache blocks, and fetching all useful

cache blocks in a single DRAM row activation. By doing

so, they prevent from multiple energy-hungry DRAM row

activations that otherwise would have happened if no spatial

prefetcher had been present [29].

We separate prior work on spatial data prefetching into

two classes: Per-Page History (PPH) and SHared History
(SHH) methods. PPH refers to approaches that record an

access history for each page (usually page footprint), then

correlate the recorded history with an event, and finally store

the history in a metadata table. On the other hand, SHH

points to methods that observe all accesses at the global

level, and save the history information (usually deltas) in a

shared metadata organization.

The SHH class of spatial prefetchers target storage

efficiency as their foremost design consideration. These

prefetchers range from straightforward stride prefetch-

ers [68], [69], [70] to more advanced prefetchers with

sophisticated heuristics for prefetching [50], [62], [63],

[64]. Typically, these prefetchers maintain a single metadata

structure to record the patterns observed by all pages. In

other words, they do not store a pattern for each page;

instead, they fuse the everywhere-observed access patterns

into a single unified organization. For example, a delta-based

SHH prefetcher (e.g., [50]) might observe three consecutive

accesses, say, A1, A2, and A3 in a specific page P1, and

401

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

generate two successive deltas, d1 and d2 (d1 = A2 − A1

and d2 = A3 − A2). In this case, instead of recording that

“A1, A2, and A3 were observed in page P1,” it records in

a global metadata history that “d2 follows d1.”

SHH strategy significantly reduces the storage require-

ments of the prefetcher; however, it also significantly reduces

the ability of prefetcher at eliminating cache misses when the

prefetcher uses the 〈d1, d2〉 correlation entry in a page whose

behavior is different from P1. Another important challenge

in SHH approaches is the prefetching degree: the number of

requests that the prefetcher issues at once. In PPH methods,

as we discuss shortly, whenever the prefetcher is triggered,

it fetches all expected-to-be-used blocks of the page at once

as determined by the page footprint. In SHH approaches,

however, there is no such wealth of information, and hence,

the prefetcher does not know how many prefetches it should

issue in order to receive the blocks in a timely manner.

SPP [62], an SHH-based method, proposes techniques to

adaptively throttle the prefetching degree: a prefetch is only

issued if the estimated accuracy of that prediction is above

a certain threshold. While such heuristics might be useful

at controlling the degree of prefetching, they cause the

miss coverage and timeliness of the prefetcher to become

increasingly dependent on the accuracy of the throttling

decisions.

Another class of spatial prefetching is PPH. Once a page

is requested by an application for the first time (i.e., trigger

access), PPH approaches start to observe and record later

accesses to that page as long as the page is actively used

by the application. Whenever the page is no longer utilized

(i.e., end of page residency), these approaches associate

the recorded access patterns to an event and then store the

〈event, pattern〉 pair in their history tables.

The recorded history is usually a bit vector, known as

the page footprint, in which each bit corresponds to a

block of the page: a ‘1’ in the footprint indicates that

the block has been used during the page residency, while

a ‘0’ indicates otherwise. The event to which the foot-

print is associated is usually extracted from the trigger

access. For example, Kumar and Wilkerson [17] proposed

using the ‘PC+Address’ of the trigger access as the

event: the ‘PC’ of the trigger instruction combined with

the ‘Address’ that was requested by the trigger in-

struction. As another case, Somogyi et al. [18] evaluated

several heuristics as the event, and empirically found that

‘PC+Offset’ performs better than the other ones: the

‘PC’ of the trigger instruction combined with ‘Offset,’
the distance of the requested cache block from the beginning

of the requested page. Later, upon the recurrence of the same

event (e.g., for the case of ‘PC+Offset,’ an instruction

with the same ‘PC’ requests a cache block that is in the

‘Offset’ distance of a page), these prefetchers apply

the stored footprint to predict and prefetch future memory

references of the currently requested page.

An associated challenge with these approaches is finding
the best event to which the footprint of a page should

be assigned. Each heuristic has its own advantages and

disadvantages. For example, of the two mentioned events,

‘PC+Address’ [17] is highly accurate as it conservatively
waits for the same instruction to be re-executed and the

same address to be touched. While accurate, this method

is unable to cover compulsory cache misses, because the

exact same page should be requested in order for the stored

footprint to be used. ‘PC+Offset’ [18], on the other hand,

is aggressive and can cover compulsory misses by applying

the footprint information of a page to another, but predictions

made based on it are not much accurate. In this paper,

we show that relying merely on one of these heuristics is
suboptimal as compared to a mechanism that correlates each
footprint with multiple events, and uses the best-matching
event for prefetching.

III. MOTIVATION

Planning to architect a high-performance spatial data

prefetcher, we narrow the design space of Bingo to PPH-

based approaches. Figure 2 shows the accuracy and match
probability of various heuristics as the event to which

the footprints of pages are associated, averaged across all

applications4. Accuracy is the percentage of all prefetched

cache blocks that have been used by the processor before

eviction, and match probability is the fraction of events that

have been found in the history table.

0%

25%

50%

75%

100%

M
etr

ic
of

 In
ter

es
t

Accuracy Match Probability

Longest ShortestEvent

Figure 2. Accuracy and match probability of various heuristics as the
event to which access history of pages are associated.

As the event becomes longer, the accuracy of predic-

tions increases while the matching probability generally de-

creases. Among the evaluated heuristics, ‘PC+Address’
is the longest event (i.e., the same instruction and the

same address should simultaneously happen) which gives

the highest prediction accuracy, but with this event, there is

less opportunity for prediction as the probability of the event

reoccurring is low. Therefore, if the predictor merely relies

4See Section V for a complete list of applications.

402

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

on this event, its predictions will be accurate, but it will not

be able to make a prediction often.

On the other hand, as the events become shorter, the accu-

racy of predictions decreases but the prediction opportunity

generally increases. With ‘Offset’ as the event, which is

the shortest event among the evaluated ones (i.e., just the

distance of a block from the beginning of the page should

reoccur), there is a high opportunity for prediction; but the

predictions are not as accurate as those of the longer events.

Therefore, if a prefetcher only uses this event, it will often

be able to issue prefetch requests, but the prefetches will be

unacceptably inaccurate.

This observation motivates a mechanism in which more

than one event is used to make predictions. Once a page

footprint is recorded, it is associated with more than one
event, and then stored in the history table. That is, a

page footprint is associated with, say, ‘PC+Address,’
‘PC+Offset,’ and ‘PC,’ and then stored in the history

table. Whenever the time for prefetching comes (i.e., a

trigger access occurs), the prefetcher looks up the history

with the longest event (i.e., ‘PC+Address’): if a match is

found, the prefetcher issues prefetch requests based on the

matched footprint; otherwise, it looks up the history with

the next-longest event (i.e., ‘PC+Offset’), in a recursive

manner. This way, the prefetcher benefits from both high

accuracy and high opportunity, overcoming the limitations

of previously-proposed spatial prefetchers.

To demonstrate the importance of using more than one

event, Figure 3 shows the miss coverage and accuracy

of a spatial prefetcher that associates page footprints to

multiple events when the number of events varies from one

to five. When the number of events is one, the prefetcher

always associates page footprints to the longest event (i.e.,

‘PC+Address’). As the number of events increases, the

prefetcher can associate page footprints to shorter events.

When the number of events is five, the prefetcher is able to

associate page footprints to all events, including the shortest

event (i.e., ‘Offset’).

As shown in Figure 3, increasing the number of events en-

ables the prefetcher to cover more cache misses while main-

taining prefetch accuracy. We observe the highest improve-

ment when we go from one event (i.e., ‘PC+Address’)

to two events (i.e., ‘PC+Address’ and ‘PC+Offset’),

as there is a significant increase in the miss coverage of

the prefetcher. Increasing the number of events beyond two,

however, does not result in a major improvement; therefore,

for the sake of simplicity, we use two events for the proposed

spatial prefetcher, Bingo.

IV. BINGO SPATIAL PREFETCHER

Like prior work [18], Bingo uses a small auxiliary storage

to record spatial patterns while the processor accesses spatial

regions. Upon an access to a new page (i.e., trigger access),

Bingo allocates an entry in its auxiliary storage for the

0%

25%

50%

75%

100%

1 2 3 4 5

M
etr

ic
of

 In
ter

es
t

Coverage Accuracy

Figure 3. Coverage and accuracy of a TAGE-like prefetcher with varying
number of events to which the footprints of pages are associated. When
the prefetcher uses one event, the event is PC+Address. As the number
of events increases, the shorter events become available to the prefetcher.
When the number of events becomes five, all events are available to the
prefetcher.

page and starts to record a footprint for it. At the end of

the residency of the page (i.e., whenever a block from the

page is invalidated or evicted from the cache [18]), Bingo
transfers the recorded pattern to its history table and frees

the corresponding entry in the auxiliary storage.

Unlike prior work, Bingo uses both ‘PC+Address’ and

‘PC+Offset’ events for prefetching. A naive implemen-

tation of Bingo requires two distinct history tables, just

like prior TAGE-like approaches. One table maintains the

history of footprints observed after each ‘PC+Address,’
while the other keeps the footprint metadata associated with

‘PC+Offset.’ Upon looking for a pattern to prefetch,

logically, first, the ‘PC+Address’ of the trigger access is

used to search the long history table. If a match is found, the

corresponding footprint is utilized to issue prefetch requests.

Otherwise, the ‘PC+Offset’ of the trigger access is used

to look up the short history table. In case of a match, the

footprint metadata of the matched entry will be used for

prefetching. If no matching entry is found, no prefetch will

be issued.

Such an implementation, however, would impose signif-

icant storage overhead. We observe that, in the context

of spatial data prefetching, a considerable fraction of the

metadata that is stored in the cascaded TAGE-like history

tables are redundant. By redundancy, we mean cases where

both metadata tables (tables associated with long and short

events) offer the same predictions. Figure 4 shows the redun-

dancy of TAGE-like history tables for spatial prefetching. In

this experiment, every time the spatial prefetcher needs to

make a prediction, we determine if the long and short events

offer the same prediction. As shown, there is considerable

redundancy ranging from 26% in SAT Solver to 93% in

Mix2.

To efficiently eliminate redundancies in the metadata

storage, instead of using multiple history tables, we propose

having a single history table but look it up multiple times,
each time with a different event. Figure 5 details our practical

403

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

0%
25%
50%
75%

100%
Re
du

nd
an

cy

Figure 4. Redundancy in the history metadata of TAGE-like predictors
for spatial prefetching. Redundancy is defined as the fraction of lookups
for which both long and short events offer an identical prediction.

design for Bingo which uses only one history table. The

main idea is based on the fact that short events are carried
in long events. That is, by having the long event at hand, we

can find out what the short events are, just by ignoring parts

of the long event. For the case of Bingo, the information of

‘PC+Offset’ is carried in ‘PC+Address;’ therefore,

by knowing the ‘PC+Address,’ we also know what

the ‘PC+Offset’ is5. To exploit this phenomenon, we

propose having only one history table which stores just the
history of the long event but is looked up with both long and
short events. For the case of Bingo, the history table stores

footprints which were observed after each ‘PC+Address’
event, but is looked up with both the ‘PC+Address’ and

‘PC+Offset’ of the trigger access in order to offer high

accuracy while not losing prefetching opportunities.

To enable this, we find that the table should only be

indexed with a hash of the shortest event but tagged with
the longest event. Whenever a piece of information is going

to be stored in the history metadata, it is associated with

the longest event, and then stored in the history table. To

do so, the bits corresponding to the shortest event are
used for indexing the history table to find the set in which

the metadata should be stored; however, all bits of the
longest event is used to tag the entry. More specifically,

with Bingo, whenever a new footprint is going to be stored

in the metadata organization, it is associated with the corre-

sponding ‘PC+Address.’ To find a location in the history

table for the new entry, a hash of only ‘PC+Offset’ is

used to index the table6. By knowing the set, the baseline

replacement algorithm (e.g., LRU) is used to choose a victim

to open a room for storing the new entry. After determining

the location, the entry is stored in the history table, but all

bits of the ‘PC+Address’ are used for tagging the entry.

Whenever there is a need for prediction, the history table

5This is also true for events that we discarded and did not use for
Bingo. All events like ‘PC,’ ‘Address,’ and ‘Offset’ are known
when we know ‘PC+Address.’ Moreover, this is also the case for other
TAGE-like predictors, including the original TAGE branch predictor [44]
where multiple history lengths are used to index the metadata tables.

6Repeatedly, the bits correspond to ‘PC+Offset’ are carried in
‘PC+Address.’

… … …
…

=

Hash of
PC+Offset

Trigger
Access

PC+Address

TagV Recency Footprint

= =

Any Match? Yes

= = =

PC+Offset Bits

Footprint

PC+Offset Bits

Any Match?
No YesNo Prefetch Footprint

Figure 5. The details of the history table lookup in Bingo prefetcher. Gray
parts indicate the case where lookup with long event fails to find a match.
Each large rectangle indicates a physical way of the history table.

is first looked up with the longest event; if a match is found,

it will be used to make a prediction. Otherwise, the table

should be looked up with the next-longest event. As both

long and short events are mapped to the same set, there is

no need to check a new set; instead, the entries of the same

set are tested to find a match with the shorter event.

With Bingo, the table is first looked up with the

‘PC+Address’ of the trigger access. If a match is found,

the corresponding footprint metadata will be used for issuing

prefetch requests. Otherwise, the table should be looked up

with the ‘PC+Offset’ of the trigger access. As we know

both ‘PC+Address’ and ‘PC+Offset’ are mapped to

the same set, there is no need to check a new set. That

is, all the corresponding ‘PC+Offset’ entries should be
in the same set. Therefore, we test the entries of the same

set to find a match. In this case, however, not all the bits

of the stored tags in the entries are necessary to match;

only the ‘PC+Offset’ bits need to be matched. This

way, we associate each footprint with more than one event

(i.e., both ‘PC+Address’ and ‘PC+Offset’) but store

the footprint metadata in the table with only one of them

(the longer one) to reduce the storage requirement. Doing

so, redundancies are automatically eliminated because a

metadata footprint is stored once with its ‘PC+Address’
tag.

In the proposed design, whenever the table is looked up

with a shorter event, it is possible that more than one match

is found. With Bingo, it is possible that none of the entries

match the ‘PC+Address’ of the trigger access, and in the

meantime, more than one entry matches the ‘PC+Offset’
of the access. Such cases present a challenge to Bingo
in that it should issue prefetch requests based on multi-

404

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

ple footprint information that may be dissimilar. Various

heuristics can be employed in such cases: e.g., choosing the

most recent footprint based on the recency information7 or

issuing prefetch requests for blocks that are indicated in the

footprint of all of the matching entries. We evaluated many

of such heuristics and empirically found that considering all

matching footprint information at issuing prefetch requests

gives the best performance: a cache block is prefetched if

it is present in the footprint of at least 20% of matching

entries.

V. METHODOLOGY

We use ChampSim8 [71], the simulation infrastructure

used in the Second Data Prefetching Championship (DPC-

2) [72], to meticulously simulate a system whose configu-

ration is shown in Table I. We model a system based on

Intel’s recent Xeon Processor [73]. The chip has four OoO

cores with an 8 MB shared last-level cache (LLC). Two

memory channels are used for accessing off-chip DRAM,

providing a maximum bandwidth of 37.5 GB/s. The OS

uses 4 KB pages and virtual to physical address mapping

is accomplished through a random first-touch translation

mechanism, enabling long-running simulations [74]. We

estimate the delay of the caches using CACTI 7.0 [75]. The

cache block size is 64 bytes in the entire memory hierarchy.

Table I
EVALUATION PARAMETERS.

Parameter Value

Chip 14 nm, 4 GHz, 4 cores
Cores 4-wide OoO, 256-entry ROB, 64-entry LSQ

Fetch Unit Perceptron [76], 16-entry pre-dispatch queue
L1-D/I Split I/D, 64 KB, 8-way, 8-entry MSHR

L2 Cache 8 MB, 16-way, 4 banks, 15-cycle hit latency
Main Memory 60 ns zero-load latency, 37.5 GB/s peak bandwidth

A. Workloads

Table II summarizes the key characteristics of our sim-

ulated workloads. In line with the literature [18], [23],

[28], [67], we choose several big-data server and scientific

applications for evaluation. We also consider five four-

core representative mix workloads from a set of memory-

intensive SPEC programs [77] whose execution performance

is highly sensitive to the latency of memory accesses.

We use the SimFlex [78] methodology to simulate server

workloads. For every server application, we create five

checkpoints with warmed caches, branch predictors, and

prediction tables. Each checkpoint is drawn over an interval

7Entries in the history table (just like any other associative structure)
store a few replacement bits (e.g., recency) to help choose a victim when
the set is full and one entry needs to be evicted (e.g., LRU). Based on this
information, we can select the most recent entry among multiple matches.

8The source code of our simulator and the imple-
mentation of evaluated data prefetchers are available at
<https://github.com/bakhshalipour/Bingo>.

of 10 seconds of simulated time as observed by the OS.

Then we run 200 K instructions from each checkpoint,

using the first 40 K instructions for warming queues (e.g.,

ROB), and the rest for actual measurements. Based on

SimFlex [78], our measurements are computed with 95%

confidence and less than 4% error. For SPEC benchmarks,

we run the simulations for at least 100 M instructions on

every core and use the first 20 M as the warm-up and the

next 80 M for measurements.

Table II
APPLICATION PARAMETERS.

Application Description LLC MPKI

Data Serving Cassandra Database, 15GB Yahoo! Benchmark 6.7
SAT Solver Cloud9 Parallel Symbolic Execution Engine 1.7
Streaming Darwin Streaming Server, 7500 Clients 3.9

Zeus Zeus Web Server v4.3, 16 K Connections 5.2
em3d 400K Nodes, Degree 2, Span 5, 15% Remote 32.4
Mix 1 lbm, omnetpp, soplex, sphinx3 15.7
Mix 2 lbm, libquantum, sphinx3, zeusmp 12.5
Mix 3 milc, omnetpp, perlbench, soplex 12.7
Mix 4 astar, omnetpp, soplex, tonto 14.7
Mix 5 GemsFDTD, gromacs, omnetpp, soplex 12.6

B. Prefetchers’ Configurations

We compare our proposal with state-of-the-art spatial data

prefetchers. For every prefetcher, we perform a sensitivity

analysis in order to find the storage required to offer

reasonable miss coverage in our workload suite. We begin

with the configuration suggested in the original work and

measure the average miss coverage across all workloads.

Then we increase the capacity of metadata tables to observe

how sensitive the prefetcher is to the allocated storage. If the

average miss coverage does not change significantly (> 5%),

we allocate the same storage to the prefetcher as stated in

the original proposal. Otherwise, we increase the storage

of the prefetcher until its average miss coverage plateaus.

In what follows, we describe the prefetchers’ configurations:

Best Offset Prefetcher: BOP [63] is a recent data

prefetcher, as well as the winner of the Second Data

Prefetching Championship (DPC-2) [72]. BOP builds upon

prior work, namely the Sandbox Prefetcher [64], and

attempts to enhance its timeliness. On each access, BOP
tests a single offset to determine whether it would have

been able to predict the current access. By evaluating

various offsets, it attempts to discover offsets that are

expected to produce timely prefetches. We evaluate BOP
with a 256-entry Recent Requests Table.

Signature Path Prefetcher: SPP [62] is another recent

data prefetcher that computes a signature for each

delta offset pattern, and estimates the probability of

delta predictions for each signature. By utilizing these

probabilities, SPP adaptively changes its prefetching

405

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

degree, putting less bandwidth pressure on the DRAM

modules. We evaluate SPP with a 256-entry Signature

Table, 512-entry Pattern Table, and 1024-entry Prefetch

Filter.

Variable Length Delta Prefetcher: VLDP [50] is a

state-of-the-art spatial data prefetcher which uses multiple

histories of deltas to predict the stream of accesses in

a given page. We simulate VLDP with a 16-entry Delta

History Buffer, 64-entry Offset Prediction Table, and three

64-entry Delta Prediction Tables.

Access Map Pattern Matching: AMPM [21] is another

state-of-the-art spatial prefetcher and the winner of the

First Data Prefetching Championship (DPC-1) [79]. AMPM
marks recently accessed cache blocks in a table called the

Memory Access Map. Based on the stored information,

AMPM detects strided access patterns and then predicts

future blocks that will be accessed. We enlarge the Memory

Access Map Table to cover the whole capacity of the LLC.

Spatial Memory Streaming: SMS is a powerful spatial

data prefetcher and the base of our proposal. SMS
associates footprint metadata to the ‘PC+Offset’ of the

triggering access. SMS has since significantly outgrown its

purpose and showed great potential in scopes like spatio-

temporal prefetching [67], determining the commodity

DRAM fetching granularity [29], and managing die-stacked

DRAM caches [36], [80], [81]. We equip SMS with a

16 K-entry 16-way associative history table.

Bingo: Our proposal associates spatial patterns to more than

one event and stores all of the patterns in a single unified

history table in a capacity-optimized manner. We use a

16-way set-associative structure for the history table and set

its capacity based on the sensitivity analysis in Section VI-A.

We study all data prefetchers in the context of the LLC

since the fairly large capacity of a multi-megabyte LLC

(as compared to primary caches) paves the way for longer
residency of pages at this level. Whenever pages linger in the

cache for a long time, a much larger opportunity is unleashed

for different data pieces to be accessed within that page.

This enables spatial prefetchers to completely observe the

data accesses of each page and precisely learn the intra-

page access patterns [28], [36], [81]. We consider every

core to have its own prefetcher, independent of others (i.e.,

no metadata sharing among cores [30]). All methods are

triggered upon LLC accesses and prefetch directly into the

LLC (i.e., no prefetch buffer [23], [28]).

VI. EVALUATION

A. Storage Requirement

The effectiveness of Bingo, like any other data prefetcher,

directly depends on the size of the history with which the

predictions are made. Figure 6 shows how the miss coverage

of Bingo changes when the number of entries dedicated to

its history table varies. As the history table becomes larger,

the miss coverage also increases because the prefetcher is

able to compare the observed event with a distant past

history, and hence, the likelihood of a match increases.

Beyond 16 K entries, the coverage plateaus, effectively

exploiting the available opportunity. Therefore, we decide

to devote 16 K entries to the history table of Bingo. With a

16 K-entry history table, the total storage requirement of the

prefetcher is 119 KB, accounting for only 6% of the LLC

capacity.

0%

25%

50%

75%

100%

1K 2K 4K 8K 16K 32K 64K

M
iss

 C
ov

er
ag

e

History Table Entries

 Data Serving
 SAT Solver
 Streaming
 Zeus
 em3d
 Mix 1
 Mix 2
 Mix 3
 Mix 4
 Mix 5

Figure 6. The miss coverage of the proposed data prefetcher as a function
of the number of entries in the history table.

B. Miss Coverage & Overpredictions

To evaluate the effectiveness of the proposed prefetcher,

Figure 7 shows the coverage and overprediction of all the

competing prefetching techniques. Covered misses are the

ones that are successfully captured by a prefetcher. Over-

predictions are incorrect prefetches, which are normalized

to the number of data misses in the baseline system without

a prefetcher9.

As shown, Bingo offers the highest miss coverage across

all workloads. By associating footprint metadata to more

than one event, and matching the longest event, Bingo
maximally and precisely extracts spatially-correlated data

access patterns and significantly reduces the number of cache

misses. On average, Bingo covers more than 63% of cache

misses, outperforming the second-best prefetcher by 8%.

The overprediction of Bingo is on par with the rest of the

competing prefetchers.

Corroborating many pieces of prior work (e.g., [3], [23],

[28]), complex access patterns in the context of modern

9Not to be confused with accuracy which is referred to the fraction of
correct prefetches out of all prefetches.

406

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

156%

0%

50%

100%

150%
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o

Data Serving SAT Solver Streaming Zeus em3d Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Average

%
Co

ns
um

pt
io

ns

Coverage Uncovered Overprediction

Figure 7. Coverage and overprediction of Bingo as compared to the competing spatial data prefetchers.

server workloads are beyond what can be captured by simple

delta-based approaches. Server workloads repeatedly tra-

verse various data structures, resulting in frequent switches

among pages (e.g., in a database buffer pool [67]). When-

ever various pages are traversed at the same time, many

patterns are manifested in a page, which are not necessarily

exhibited in other pages; as a consequence, SHH-based

spatial prefetchers (e.g., BOP, SPP, VLDP) are faced with

significant challenges, which prevent them from offering a

high level of miss coverage.

Techniques like what has been proposed in BOP and SPP
throttle down the prefetcher when it offers high overpre-

dictions. However, by doing so, they also reduce the miss

coverage because prefetch requests, including the correct

ones, are lazily issued. VLDP uses multiple histories of

deltas for prediction, and hence, offers higher miss coverage.

However, it suffers from the inefficiencies of its multi-

degree prefetching. Upon predicting the next access in a

page, VLDP uses the prediction as input to the history

tables to make more predictions. We observe that this

strategy is inaccurate for server workloads and produces

more overpredictions as the prefetching degree increases10.

By maintaining footprint metadata for each page, AMPM
and SMS offer an order of magnitude higher coverage as

compared to other prior prefetchers. SMS, however, is more

aggressive than AMPM, resulting in higher overprediction

and higher miss coverage. SMS correlates footprints with

the ‘PC+Offset’ of the trigger accesses and applies the

learned footprint whenever the same ‘PC+Offset’ is ob-

served again. However, as we showed, the ‘PC+Offset’
is not long enough to offer high accuracy.

C. System Performance

Figure 8 shows the performance improvement of Bingo
along with other prefetching techniques, over a baseline

10This observation was also made by prior work [28], [62] for VLDP
in the context of data prefetching. Moreover, a similar observation for the
inaccuracy of such a strategy was made by Kolli et al. [82] in the context
of instruction prefetching for server workloads.

without a prefetcher. Bingo consistently outperforms the

competing prefetching approaches across all workloads. The

performance improvement of Bingo ranges from 11% in

Zeus to 285% in em3d. Miss coverage, timeliness, and

the accuracy of prefetches are the main contributors to

Bingo’s superior performance improvement. For most of

the workloads, Bingo provides a significant performance

improvement. In Zeus, however, memory accesses are more

temporally correlated than spatially [28]. Even those ac-

cesses that are spatially predictable are already fetched in

parallel by the out-of-order processing, resulting in a negli-

gible performance improvement with spatial prefetchers.

As a result of low miss coverage, techniques like BOP and

SPP provide lower performance improvement as compared

to the other methods, especially on server workloads. VLDP
offers higher performance, mainly because of having better

miss coverage. However, it falls behind PPH-based methods

like AMPM and SMS that keep page footprints and use that

to issue more accurate prefetches for all expected-to-be-used

cache blocks (cf. Section II). While AMPM and SMS offer

high levels of performance improvement, their performance

is still significantly less than that of Bingo. By associating

footprint metadata to more than one event and matching

the longest event, Bingo maximally and accurately extracts

spatially-correlated data access patterns and uses them for

accurate and timely prefetching.

D. Performance Density

Many pieces of prior work [8], [9], [30], [83] argue

that the performance gain of hardware optimizers, like

prefetchers, should outweigh their area overhead. Otherwise,

using the silicon real estate to further increase the number

of cores may be more beneficial. Prior work used a metric

called performance density, defined as throughput per unit
area, to quantify how efficiently a design uses the silicon real

estate: incorporating the hardware prefetcher into a system

is beneficial only if it is able to increase the performance

density [8], [30].

407

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

80%
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o
BO

P
SP

P
VL

DP
AM

PM SM
S

Bi
ng

o

Data Serving SAT Solver Streaming Zeus em3d Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 GMean

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

17
9%

16
5%

22
0%

22
1%

21
8%

28
5%

11
3%

93
%

90
%

13
0%

13
6%

14
9%

90
%

Figure 8. Performance comparison of prefetching techniques, normalized to a baseline system with no prefetcher.

As the area requirement of the evaluated prefetchers

are different from one another, to better understand how

effectively they use the chip silicon area, we evaluate their

performance density. Figure 9 summarizes the results of this

study, showing the performance density improvement of all

evaluated designs as compared to a baseline system with

no prefetcher. For this experiment, we only consider the

area of cores, caches, interconnect, and memory channels,

neglecting the area of I/O devices.

Bingo improves the performance density of the baseline

system by 59%, which is 10% higher than that of the second

best-performing method. As compared to other prefetchers,

the performance density improvement of Bingo is slightly

lower than its performance improvement. The main reason

is the larger history table of Bingo in comparison to the

metadata table(s) of other approaches. However, the drop

in the performance density is insignificant (less than 1%)

as the total area overhead of Bingo is less than 6% of the

LLC area and a small fraction of the whole chip area. The

results indicate that the performance improvement of Bingo
far outweighs its storage overhead, making it a practical

0%

20%

40%

60%

Pe
rfo

rm
an

ce
 D

en
sit

y I
m

pr
ov

em
en

t

Figure 9. Performance Density improvement of evaluated methods over
a baseline system without a prefetcher.

design for high-performance processors.

E. ISO-Degree Comparison

Certainly, a significant fraction of the performance im-

provement of Bingo and other PPH-based methods over

SHH-based ones comes from their better timeliness. Bingo,

like other PPH-based methods, gathers a footprint for every

page and issues prefetch requests for all expected-to-be-used

blocks of the page at once, resulting in superior timeliness.

However, in SHH-based methods, there is no information

about the footprint of pages; hence, the methods do not

know how many prefetches they should issue whenever they

are triggered. Prior work employs various mechanisms in

order to enable multi-degree prefetching in the context of

SHH-based methods. For example, VLDP, upon predicting

the next access in the page, uses the prediction as input

to the history tables to issue more prefetches. Typically,

there is a trade-off between the degree of prefetching and its

prediction accuracy: the more aggressive the prefetcher is,

the more wrong prefetches are expected. To cope with the

overprediction of multi-degree prefetching, prior pieces of

work, using various heuristics, attempt to limit the number

of multi-degree prefetches. For example, VLDP allows the

prefetching degree to be up to four.

In this section, in order to provide an iso-degree compar-

ison, we lift the ban and allow the SHH-based prefetchers

to issue further prefetch requests upon each activation. We

set the maximum degree of BOP/VLDP to 32 and set the

confidence threshold [62] of SPP to 1%. Figure 10 shows

the results of this experiment. Due to better timeliness,

the performance of SHH-based methods slightly increases;

however, their overprediction likewise increases because of

many wrong prefetches, resulting in significant off-chip

bandwidth pollution. With iso-degree prefetching, Bingo
still significantly outperforms all other methods.

408

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t :ܥ 39% → 47%ܱ: 25% → 286% :ܥ 32% → 43%ܱ: 14% → 31% :ܥ 41% → 47%ܱ: 26% → 79%

Figure 10. ISO-degree comparison of prefetching methods. ‘Orig’ indi-
cates the original and so-far–evaluated version of an SHH-based prefetcher;
however, ‘Aggr’ represents the aggressive and high-degree version. Callouts
indicate how the coverage and overprediction of prefetchers vary from the
original version to the aggressive version: ‘C’ and ‘O’ stand for ‘Coverage’
and ‘Overprediction,’ respectively.

VII. RELATED WORK

Many pieces of recent work target long latency memory

stalls in the context of hardware data prefetchers. IMP [84]

identifies and prefetches irregular memory accesses from

indirect patterns of the form A[B[i]], which are copious

in many applications like graph analytics and sparse linear

algebra. TEMPO [85] augments memory controllers to track

accesses to page table entries in order to prefetch post-

translation accesses. Domino [28] uses a combination of

one or two last data misses to find the correct temporal

address stream in the history and prefetch the subsequent

data misses. B-Fetch [86] utilizes the branch predictor to run

ahead of the executing program, thereby prefetching load

instructions along the expected future path. A few recent

studies [87], [88] also evaluated the use of deep learning

algorithms for prediction of memory accesses. None of these

methods rely on spatial correlation, and hence, can be used

orthogonally with our proposal.

Several approaches use spatial pattern predictors outside

the context of data prefetching. SFP [17] uses a predictor

based on spatial footprints to recognize useful words of

cache blocks and stores such words in a decoupled sec-

tored cache [89]. BuMP [29] determines the DRAM fetch

granularity by relying on a spatial footprint predictor that

identifies the usage density of the opened DRAM row.

Footprint caching [36], [80], [81] proposes to manage the

die-stacked DRAM as a page-based cache with multiple-

block fetch granularity. Footprint caching approaches em-

ploy spatial footprint predictors to fetch and cache only the

expected-to-be-used cache blocks of every page, reducing

the bandwidth pressure on DRAM modules. Our proposal

can be incorporated into such schemes to achieve higher

prediction efficiency.

VIII. CONCLUSION

Long latency off-chip misses, which often stall the

processor for the data to arrive, are a major source of

performance degradation in big-data applications. Spatial

data prefetching is a technique for reducing the number

of cache misses or their harmful effect. Spatial data

prefetchers exploit the fact that data accesses are spatially

correlated over memory regions of several kilobytes, and

this correlation is predictable. In this work, we showed

that state-of-the-art spatial data prefetchers do not fully

take advantage of the existing opportunities because

of associating the footprint metadata to just a single

event. We proposed a practical approach to associate the

footprint metadata to more than one event to improve the

coverage and accuracy of spatial prefetching. Moreover, we

suggested a general mechanism to eliminate redundancies

in the metadata table of history-based predictors. We

showed that the proposed spatial prefetcher significantly

outperforms the competing spatial prefetchers.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable

comments. We appreciate Mark Sutherland from PARSA-

EPFL for providing us with the required tools for simulating

server workloads in the context of our framework. We thank

members of IPM HPC center for maintaining and managing

the cluster that is used to carry out the experiments.

REFERENCES

[1] T. S. Karkhanis and J. E. Smith, “A First-Order Superscalar Processor Model,” in
Proceedings of the International Symposium on Computer Architecture (ISCA),
pp. 338–349, 2004.

[2] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding Sources of
Inefficiency in General-purpose Chips,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), pp. 37–47, 2010.

[3] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the Clouds: A
Study of Emerging Scale-Out Workloads on Modern Hardware,” in Proceedings
of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 37–48, 2012.

[4] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Quantifying the
Mismatch Between Emerging Scale-Out Applications and Modern Processors,”
ACM Transactions on Computer Systems (TOCS), vol. 30, pp. 15:1–15:24, Nov.
2012.

[5] A. Mirhosseini, A. Sriraman, and T. F. Wenisch, “Enhancing Server Efficiency in
the Face of Killer Microseconds,” Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA), 2019.

[6] M. Hashemi, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Accelerating Dependent
Cache Misses with an Enhanced Memory Controller,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), pp. 444–455, 2016.

[7] M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous Runahead: Transparent
Hardware Acceleration for Memory Intensive Workloads,” in Proceedings of
the International Symposium on Microarchitecture (MICRO), pp. 61:1–61:12,
2016.

409

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

[8] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel,
A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-Out Processors,”
in Proceedings of the International Symposium on Computer Architecture
(ISCA), pp. 500–511, 2012.

[9] P. Esmaili-Dokht, M. Bakhshalipour, B. Khodabandeloo, P. Lotfi-Kamran, and
H. Sarbazi-Azad, “Scale-Out Processors & Energy Efficiency,” arXiv preprint
arXiv:1808.04864, 2018.

[10] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive NUCA:
Near-Optimal Block Placement and Replication in Distributed Caches,” in
Proceedings of the International Symposium on Computer Architecture (ISCA),
pp. 184–195, 2009.

[11] D. Guttman, M. T. Kandemir, M. Arunachalamy, and V. Calina, “Performance
and Energy Evaluation of Data Prefetching on Intel Xeon Phi,” in Proceedings of
the International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 288–297, 2015.

[12] V. Jiménez, R. Gioiosa, F. J. Cazorla, A. Buyuktosunoglu, P. Bose, and F. P.
O’Connell, “Making Data Prefetch Smarter: Adaptive Prefetching on POWER7,”
in Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 137–146, 2012.

[13] H. Kang and J. L. Wong, “To Hardware Prefetch or Not to Prefetch?: A
Virtualized Environment Study and Core Binding Approach,” in Proceedings
of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 357–368, 2013.

[14] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu, “Knights Landing: Second-Generation
Intel Xeon Phi Product,” IEEE Micro, vol. 36, no. 2, pp. 34–46, 2016.

[15] P. Conway and B. Hughes, “The AMD Opteron Northbridge Architecture,” IEEE
Micro, vol. 27, no. 2, pp. 10–21, 2007.

[16] T. Horel and G. Lauterbach, “UltraSPARC-III: Designing Third-Generation 64-
bit Performance,” IEEE Micro, vol. 19, no. 3, pp. 73–85, 1999.

[17] S. Kumar and C. Wilkerson, “Exploiting Spatial Locality in Data Caches Using
Spatial Footprints,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), pp. 357–368, 1998.

[18] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial Memory Streaming,” in Proceedings of the International Symposium
on Computer Architecture (ISCA), pp. 252–263, 2006.

[19] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Stealth Prefetching,” in Proceedings
of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 274–282, 2006.

[20] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos, “Accurate and Complexity-
Effective Spatial Pattern Prediction,” in Proceedings of the International Sympo-
sium on High-Performance Computer Architecture (HPCA), pp. 276–287, 2004.

[21] Y. Ishii, M. Inaba, and K. Hiraki, “Access Map Pattern Matching for Data Cache
Prefetch,” in Proceedings of the International Conference on Supercomputing
(ICS), pp. 499–500, 2009.

[22] Y. Solihin, J. Lee, and J. Torrellas, “Using a User-Level Memory Thread for
Correlation Prefetching,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), pp. 171–182, 2002.

[23] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsafi,
“Temporal Streaming of Shared Memory,” Proceedings of the International
Symposium on Computer Architecture (ISCA), pp. 222–233, 2005.

[24] M. Ferdman and B. Falsafi, “Last-Touch Correlated Data Streaming,” in Pro-
ceedings of the International Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 105–115, 2007.

[25] Y. Chou, “Low-Cost Epoch-Based Correlation Prefetching for Commercial Ap-
plications,” in Proceedings of the International Symposium on Microarchitecture
(MICRO), pp. 301–313, 2007.

[26] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos, “Practical
Off-Chip Meta-Data for Temporal Memory Streaming,” in Proceedings of the
International Symposium on High-Performance Computer Architecture (HPCA),
pp. 79–90, 2009.

[27] A. Jain and C. Lin, “Linearizing Irregular Memory Accesses for Improved
Correlated Prefetching,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), pp. 247–259, 2013.

[28] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino Temporal
Data Prefetcher,” in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), pp. 131–142, 2018.

[29] S. Volos, J. Picorel, B. Falsafi, and B. Grot, “BuMP: Bulk Memory Access
Prediction and Streaming,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), pp. 545–557, 2014.

[30] C. Kaynak, B. Grot, and B. Falsafi, “SHIFT: Shared History Instruction Fetch for
Lean-Core Server Processors,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), pp. 272–283, 2013.

[31] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the Bandwidth Wall: Challenges in and Avenues for CMP Scaling,” in
Proceedings of the International Symposium on Computer Architecture (ISCA),
pp. 371–382, 2009.

[32] J. Huh, D. Burger, and S. W. Keckler, “Exploring the Design Space of Future
CMPs,” in Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT), pp. 199–210, 2001.

[33] M. Bakhshalipour, A. Faraji, S. A. Vakil Ghahani, F. Samandi, P. Lotfi-Kamran,
and H. Sarbazi-Azad, “Reducing Writebacks Through In-Cache Displacement,”
ACM Transactions on Design Automation of Electronic Systems (TODAES),
2019.

[34] M. Bakhshalipour, H. Zare, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Die-Stacked
DRAM: Memory, Cache, or MemCache?,” arXiv preprint arXiv:1809.08828,
2018.

[35] H. A. Esfeden, F. Khorasani, H. Jeon, D. Wong, and N. Abu-Ghazaleh,
“CORF: Coalescing Operand Register File for GPUs,” in Proceedings of the
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2019.

[36] D. Jevdjic, S. Volos, and B. Falsafi, “Die-Stacked DRAM Caches for Servers: Hit
Ratio, Latency, or Bandwidth? Have It All with Footprint Cache,” in Proceedings
of the International Symposium on Computer Architecture (ISCA), pp. 404–415,
2013.

[37] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-Aware Shared Re-
source Management for Multi-core Systems,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), pp. 141–152, 2011.

[38] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated Control of
Multiple Prefetchers in Multi-Core Systems,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), pp. 316–326, 2009.

[39] E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching Systems,” in
Proceedings of the International Symposium on High-Performance Computer
Architecture (HPCA), pp. 7–17, 2009.

[40] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-Aware DRAM Con-
trollers,” in Proceedings of the International Symposium on Microarchitecture
(MICRO), pp. 200–209, 2008.

[41] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers,”
in Proceedings of the International Symposium on High-Performance Computer
Architecture (HPCA), pp. 63–74, 2007.

[42] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward Dark Silicon
in Servers,” vol. 31, no. 4, pp. 6–15, 2011.

[43] M. Bakhshalipour, P. Lotfi-Kamran, A. Mazloumi, F. Samandi, M. Naderan,
M. Modarressi, and H. Sarbazi-Azad, “Fast Data Delivery for Many-Core
Processors,” IEEE Transactions on Computers (TC), vol. 67, no. 10, pp. 1416–
1429, 2018.

[44] A. Seznec, “A Case for (Partially)-Tagged Geometric History Length Predictors,”
Journal of Instruction-Level Parallelism (JILP), 2006.

[45] J. Cleary and I. Witten, “Data Compression Using Adaptive Coding and Partial
String Matching,” IEEE Transactions on Communications (TCOM), vol. 32,
no. 4, pp. 396–402, 1984.

[46] A. Seznec, “A New Case for the TAGE Branch Predictor,” in Proceedings of the
International Symposium on Microarchitecture (MICRO), pp. 117–127, 2011.

[47] A. Seznec, J. San Miguel, and J. Albericio, “The Inner Most Loop Iteration
Counter: A New Dimension in Branch History,” in Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), pp. 347–357, 2015.

410

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

[48] P. Michaud, “An Alternative TAGE-Like Conditional Branch Predictor,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 15, pp. 30:1–
30:23, Aug. 2018.

[49] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “An Efficient Tempo-
ral Data Prefetcher for L1 Caches,” IEEE Computer Architecture Letters (CAL),
vol. 16, no. 2, pp. 99–102, 2017.

[50] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and
Z. Chishti, “Efficiently Prefetching Complex Address Patterns,” in Proceedings
of the International Symposium on Microarchitecture (MICRO), pp. 141–152,
2015.

[51] A. Perais and A. Seznec, “Practical Data Value Speculation for Future High-
End Processors,” in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), pp. 428–439, 2014.

[52] A. Perais and A. Seznec, “EOLE: Paving the Way for an Effective Implemen-
tation of Value Prediction,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), pp. 481–492, 2014.

[53] A. Perais and A. Seznec, “BeBoP: A Cost Effective Predictor Infrastructure for
Superscalar Value Prediction,” in Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA), pp. 13–25, 2015.

[54] A. Perais and A. Seznec, “Cost Effective Physical Register Sharing,” in
Proceedings of the International Symposium on High-Performance Computer
Architecture (HPCA), pp. 694–706, 2016.

[55] A. Perais, F. A. Endo, and A. Seznec, “Register Sharing for Equality Prediction,”
in Proceedings of the International Symposium on Microarchitecture (MICRO),
pp. 4:1–4:12, 2016.

[56] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi, “A Mostly-Clean
DRAM Cache for Effective Hit Speculation and Self-Balancing Dispatch,” in
Proceedings of the International Symposium on Microarchitecture (MICRO),
pp. 247–257, 2012.

[57] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh,
“Prediction-Based Quality Control for Approximate Accelerators,” in Workshop
on Approximate Computing Across the System Stack (WACAS), 2015.

[58] K. Kuroyanagi and A. Seznec, “Service Value Aware Memory Scheduler by
Estimating Request Weight and Using Per-Thread Traffic Lights,” in Memory
Scheduling Championship (MSC), 2012.

[59] N. Prémillieu and A. Seznec, SPREPI: Selective Prediction and Replay for
Predicated Instructions. PhD thesis, INRIA, 2013.

[60] F. Khorasani, H. A. Esfeden, N. Abu-Ghazaleh, and V. Sarkar, “In-Register
Parameter Caching for Dynamic Neural Nets with Virtual Persistent Processor
Specialization,” in Proceedings of the International Symposium on Microarchi-
tecture (MICRO), 2018.

[61] A. Vakil-Ghahani, S. Mahdizadeh-Shahri, M.-R. Lotfi-Namin, M. Bakhshalipour,
P. Lotfi-Kamran, and H. Sarbazi-Azad, “Cache Replacement Policy Based on
Expected Hit Count,” IEEE Computer Architecture Letters (CAL), vol. 17, no. 1,
pp. 64–67, 2018.

[62] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path Confidence Based Lookahead Prefetching,” in Proceedings
of the International Symposium on Microarchitecture (MICRO), pp. 60:1–60:12,
2016.

[63] P. Michaud, “Best-Offset Hardware Prefetching,” in Proceedings of the In-
ternational Symposium on High-Performance Computer Architecture (HPCA),
pp. 469–480, 2016.

[64] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott, A. Jaleel,
S.-L. Lu, K. Chow, and R. Balasubramonian, “Sandbox Prefetching: Safe Run-
Time Evaluation of Aggressive Prefetchers,” in Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA), pp. 626–637,
2014.

[65] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith, “AC/DC: An Adaptive Data
Cache Prefetcher,” in Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 135–145, 2004.

[66] K. J. Nesbit and J. E. Smith, “Data Cache Prefetching Using a Global History
Buffer,” in Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), pp. 96–96, 2004.

[67] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-Temporal Mem-
ory Streaming,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), pp. 69–80, 2009.

[68] J.-L. Baer and T.-F. Chen, “An Effective On-Chip Preloading Scheme to
Reduce Data Access Penalty,” in Proceedings of the International Conference
on Supercomputing (ICS), pp. 176–186, 1991.

[69] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham, “Effective
Stream-Based and Execution-Based Data Prefetching,” in Proceedings of the
International Conference on Supercomputing (ICS), pp. 1–11, 2004.

[70] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of
a Small Fully-Associative Cache and Prefetch Buffers,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), pp. 364–373, 1990.

[71] “ChampSim.” https://github.com/ChampSim/, 2017.

[72] S. Pugsley, A. Alameldeen, C. Wilkerson, and H. Kim, “The Second Data
Prefetching Championship (DPC-2),” 2015.

[73] “Intel Xeon Processor E3-1220 v6.” https://www.intel.com/content/www/us/en/
products/processors/xeon/e3-processors/e3-1220-v6.html/, 2017.

[74] S. Franey and M. Lipasti, “Tag Tables,” in Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA), pp. 514–525,
2015.

[75] “CACTI 7.0: A Tool to Model Caches/Memories, 3D Stacking, and Off-Chip
IO.” https://github.com/HewlettPackard/cacti/, 2017.

[76] D. A. Jiménez and C. Lin, “Dynamic Branch Prediction with Perceptrons,” in
Proceedings of the International Symposium on High-Performance Computer
Architecture (HPCA), pp. 197–206, 2001.

[77] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM SIGARCH
Computer Architecture News, 2006.

[78] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and
J. C. Hoe, “SimFlex: Statistical Sampling of Computer System Simulation,”
IEEE Micro, vol. 26, no. 4, pp. 18–31, 2006.

[79] “The First JILP Data Prefetching Championship (DPC-1).” https://www.jilp.org/
dpc/online/papers/DPC-1-intro.pdf/, 2009.

[80] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee, “Efficient Foot-
print Caching for Tagless DRAM Caches,” in Proceedings of the International
Symposium on High-Performance Computer Architecture (HPCA), pp. 237–248,
2016.

[81] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison Cache: A Scalable
and Effective Die-Stacked DRAM Cache,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), pp. 25–37, 2014.

[82] A. Kolli, A. Saidi, and T. F. Wenisch, “RDIP: Return-Address-Stack Directed
Instruction Prefetching,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), pp. 260–271, 2013.

[83] P. Lotfi-Kamran, M. Modarressi, and H. Sarbazi-Azad, “Near-Ideal Networks-
on-Chip for Servers,” in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), pp. 277–288, 2017.

[84] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect Memory
Prefetcher,” in Proceedings of the International Symposium on Microarchitecture
(MICRO), pp. 178–190, 2015.

[85] A. Bhattacharjee, “Translation-Triggered Prefetching,” in Proceedings of the
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 63–76, 2017.

[86] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. Gratz, and D. Jimenez, “B-
Fetch: Branch Prediction Directed Prefetching for Chip-Multiprocessors,” in
Proceedings of the International Symposium on Microarchitecture (MICRO),
pp. 623–634, 2014.

[87] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis,
and P. Ranganathan, “Learning Memory Access Patterns,” in International
Conference on Machine Learning (ICML), 2018.

[88] L. Peled, U. Weiser, and Y. Etsion, “Towards Memory Prefetching with Neural
Networks: Challenges and Insights,” arXiv preprint arXiv:1804.00478, 2018.

[89] A. Seznec, “Decoupled Sectored Caches: Conciliating Low Tag Implementation
Cost,” in Proceedings of the International Symposium on Computer Architecture
(ISCA), pp. 384–393, 1994.

411

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 22:59:50 UTC from IEEE Xplore. Restrictions apply.

