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Abstract—Graph analytics is an important workload that
achieves suboptimal performance due to poor cache locality.
State-of-the-art cache replacement policies fail to capture the
highly dynamic and input-specific reuse patterns of graph ap-
plication data. The main insight of this work is that for graph
applications, the transpose of a graph succinctly represents the
next references of all vertices in a graph execution; enabling
an efficient emulation of Belady’s MIN replacement policy. In
this work, we propose P-OPT, an architecture solution that uses
a specialized compressed representation of a transpose’s next
reference information to enable a practical implementation of
Belady’s MIN replacement policy. Our evaluations across multi-
ple applications and inputs reveal that P-OPT improves cache
locality for graph applications providing an average performance
improvement of 33% (56% maximum) over LRU replacement.

I. INTRODUCTION

Graph processing is an important class of computations with

valuable applications in network analysis, path-planning, ma-

chine learning, and COVID-19 therapeutics discovery [1], [12],

[18], [55]. In the past, large graphs were primarily processed

on distributed systems [23], [35], [46]. Today, increased main

memory capacity and core counts allow processing graphs with

billions of edges more efficiently on a single machine rather

than a distributed system [38].

The large size of input graphs make high performance

single-machine graph processing a challenge. Processing a

typical input graph leads to a working set size much larger

than the available on-chip cache capacity, leading to many

DRAM accesses. The latency of these DRAM accesses often

dominate execution time because memory accesses in graph

processing are irregular and depend on graph structure: prior

work estimates that graph kernels spend up to 80% of total

time simply waiting for DRAM [6], [7], [57]. Techniques to

improve cache locality and eliminate DRAM accesses are a

major opportunity for improving end-to-end graph application

performance.

A cache’s replacement policy is a key determinant of

locality. Decades of work have produced high-performance

replacement policies for various workloads. However, we find

that state-of-the-art replacement policies are ineffective for

graph processing. Graph data reuse is dynamically variable and

graph-structure-dependent, two properties not captured well

by existing replacement policies. Belady’s MIN replacement

policy is an ideal policy that perfectly captures dynamic, graph-

structure-dependent reuse, but it is impractical because it relies

on knowledge of future accesses.

The main insight of our work is that a practical cache

replacement policy can approach Belady’s MIN replacement

policy without oracular future knowledge by directly referring
to the graph’s structure for replacement decisions.

Replacement using the adjacency matrix captures structure-

dependent access patterns. A graph kernel traverses a graph’s

adjacency matrix with an outer loop over vertices in one

dimension (e.g., column) and an inner loop over a vertex’s

neighbors in the other dimension (e.g., rows). Assuming an

outer-loop over columns, processing a vertex v scans down

v’s adjacency matrix column, to find neighboring vertices (e.g.

u) in each non-zero row. The adjacency matrix encodes the

next use of u. Scanning across u’s row, the column of the

next non-zero element in the row corresponds to the outer-loop

vertex during the traversal of which, the execution will next

access u as a neighbor. An optimal cache replacement decision

is to evict data for the vertex next accessed on the iteration

furthest in the future.

This work develops Transpose-based Cache Replacement
(T-OPT), a high-performance replacement policy for graph data

that directly uses a graph’s adjacency matrix to make near-

optimal replacement decisions. Graph kernels use a compressed,

sparse data structure — Compressed Sparse Row (CSR) or

Compressed Sparse Column (CSC) — that allows efficient

traversal of one dimension (e.g., columns) but not both. Finding

a vertex’s next use requires scanning the matrix in the opposite

dimension from the traversal. T-OPT leverages the fact that

most graph processing frameworks already store a graph and
its transpose in a sparse format, allowing traversal in either

dimension [11], [50]. T-OPT directly refers to the transpose

to replace the line next used furthest in the future. The key

challenge is to make transpose accesses for cache replacement

efficient enough to improve end-to-end performance.

Our main contribution is P-OPT: an architecture for T-OPT

that allows efficient access to a graph’s adjacency matrix and its

transpose, enabling near-optimal cache replacement for graph

data. P-OPT uses epoch quantization to compress the next

reference information in the graph’s transpose. P-OPT uses

simple cache partitioning and NUCA bank mapping techniques

to efficiently store a specialized data structure (called the

Rereference Matrix) containing a summary of graph transpose

information. P-OPT’s mechanisms allow low-cost access to a

vertex’s next reference at replacement time.

We evaluate P-OPT and show consistent performance im-

provement across a range of input graphs and applications.
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P-OPT reduces Last Level Cache (LLC) misses by 35% on

average leading to an average performance improvement of

33% relative to the LRU replacement policy. Compared to the

more representative DRRIP [30], [52] baseline, P-OPT reduces

LLC misses by 24% on average (52% maximum) providing an

average performance improvement of 22% (53% maximum).

In summary, we make the following contributions :

• We show that state-of-the-art cache replacement policies

are ineffective for graph processing. (Section II).

• We show that guiding replacement based on graph

structure in T-OPT allows emulating Belady’s MIN

policy without oracular knowledge of all future accesses

(Section III).

• We describe P-OPT’s quantized Rereference Matrix data

structure (Section IV) and architectural mechanisms (Sec-

tion V) that allow low-cost access to the graph transpose

for optimal replacement.

• We evaluate P-OPT across a range of graphs and applica-

tions comparing to many state-of-the-art systems, showing

P-OPT’s consistent performance benefits (Section VII).

II. BACKGROUND: GRAPH PROCESSING AND CACHE

REPLACEMENT

The goal of this work is to develop a practical implementation

of Belady’s MIN replacement policy for graph processing

applications. This section overviews the challenges of single-

machine, multi-core graph processing.
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Fig. 1: Graph Traversal Patterns and Representations

A. Overview of Graph Processing

Graph processing frameworks ubiquitously use the same data

structures and sub-computations [49]. A graph is abstractly

represented as an Adjacency Matrix, which encodes directional

edges between source and destination vertices as non-zero

entries. Figure 1 shows an example adjacency matrix.

Data Structures: Analytics frameworks store graphs in

compressed sparse formats because real-world graphs are often

very sparse (>99% sparse [15]). The Compressed Sparse
Row/Column (CSR/CSC) format is storage efficient and can

quickly identify a vertex’s neighbors [14], [39]. Figure 1

shows the CSR and CSC for the example graph. CSR encodes

outgoing destination neighbors for each source vertex. CSC

encodes incoming source neighbors for each destination vertex.

Both CSR and CSC use two arrays to represent the adjacency

matrix. The Offsets Array (OA) stores the starting offset of

a vertex’s neighbors in the Neighbor Array (NA). The NA

contiguously stores each vertex’s neighbors. To access the

neighbor of vertex i in constant time, an application accesses

the ith and (i+1)th entries in OA to find the range of indices

in NA containing vertex i’s neighbors. Most frameworks [9],

[47], [50], [51], [58] store CSR and CSC because common

algorithms [44] and optimizations [11], [50] require fast access

to both outgoing and incoming neighbors.

Graph Traversal Pattern: A common idiom in graph

processing is to iteratively visit each edge and update per-vertex

data corresponding to the edge’s source and destination vertices.

Figure 1 shows that an application may traverse each source

vertex’s outgoing neighbors (using CSR) or each destination

vertex’s incoming neighbors (using CSC). Traversing outgoing

neighbors (scanning adjacency matrix rows) is referred to as

a push execution. Traversing incoming neighbors (scanning

adjacency matrix columns) is a pull execution [11].

Algorithm 1 Pull execution of a graph kernel

1: for dst in G do
2: for src in G.incoming neighs(dst) do
3: dstData[dst] += srcData[src]

Algorithm 1 shows a pull execution of a graph processing

kernel which is similar to a Sparse Matrix Dense Vector

product (SpM-DV). This kernel illustrates the key performance

challenge of graph processing. Lines 1 and 2 traverse the

graph’s CSC, first indexing into the OA using a destination

vertex ID (dst) and then scanning incoming neighbors (source

vertices) in the NA. Line 3 is a per-edge computation that

indexes into graph application data (dstData and srcData
arrays) using dst and src vertex IDs respectively. The CSC

and dstData accesses are streaming. However, the arbitrary

order of the CSC’s Neighbor Array leads to an irregular,

graph-dependent pattern of accesses to srcData. Real-world

graphs are very large (GBs – TBs), and irregular accesses

to large graphs have poor cache locality. Prior work showed

that irregular DRAM access latency makes 60-80% of graph

processing time [57]. Therefore, cache locality optimizations

for graph processing can provide significant performance gains.

B. Limitations of existing replacement policies

Prior work produced high-performance replacement poli-

cies [28], [30], [32], [53] applicable to a range of workloads,

but the characteristics of graph processing render state-of-

the-art policies ineffective. We implement three state-of-the-

art policies, comparing their cache miss rates for graph

workloads against a baseline Least Recently Used (LRU)

policy. DRRIP [30] offers scan-resistance and thrash-resistance.

SHiP [53] uses signatures to predict re-references to application

data. We implement two SHiP variants [53] – SHiP-PC and

SHiP-Mem – that track replacement by PC and memory

address respectively. We also compare to Hawkeye [28], the

winning policy in the 2019 cache replacement championship [2].

Hawkeye retroactively applies Belady’s MIN replacement

policy to a history of accesses to predict future re-references

based on whether past accesses would have hit in cache.
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Fig. 2: LLC Misses-Per-Kilo-Instructions (MPKI) across
state-of-the-art policies: Lower is better.

Figure 2 shows Last Level Cache (LLC) miss statistics for

different policies for the PageRank application on a set of

large graphs (Section VI details our setup). The data show

that state-of-the art policies do not substantially reduce misses

compared to LRU. We observed that all policies have LLC

miss rates in the range of 60% to 70%. The state-of-the-art

policies fare poorly because graph processing applications

do not meet their assumptions. Simple policies (LRU and

DRRIP) do not learn graph-structure-dependent irregular access

patterns. SHiP-PC and Hawkeye use the PC to predict re-

reference, assuming all accesses by an instruction have the same

reuse properties. As Algorithm 1 illustrates, graph applications

violate this assumption because the same srcData access

(line 3) will have different locality for high-connectivity

vertices compared to the low-connectivity vertices. SHiP-Mem

predicts re-reference using memory addresses, assuming that

all accesses to a range of addresses will have the same reuse

properties. Even with infinite storage to track individual cache

lines, our idealized SHiP-Mem implementation provides little

improvement over LRU, highlighting that graph workloads

do not have static reuse properties. This data shows the

ineffectiveness of state-of-the-art DRRIP, SHiP, and Hawkeye

policies for graph processing, corroborating findings from prior

work [20]. Therefore, we develop a graph-specific replacement

policy to eliminate costly DRAM accesses and improve the

performance of graph applications.

III. TRANSPOSE-BASED OPTIMAL CACHE REPLACEMENT

State-of-the-art replacement policies perform poorly for

graph applications because they do not capture dynamically

varied, graph-structure-dependent reuse patterns. Belady’s MIN

replacement policy (which we call OPT) evicts the line accessed

furthest in future. However, OPT is impractical because

it requires oracular knowledge of future memory accesses.

Our main insight is that for graph applications, the graph’s

transpose stores sufficient information to practically emulate

OPT behavior.

A. Transpose Encodes Future Reference Information

We first discuss a simple OPT implementation that (im-

practically) requires future knowledge, applied to the pull-

based graph kernel in Algorithm 1. As shown in Figure 3

(left), a pull-based traversal sequentially visits each destination

vertex’s incoming source neighbors (encoded in the CSC).

The pull execution generates streaming accesses to the CSC

(OA and NA) and dstData, while memory accesses to

srcData depend on the contents of NA (Figure 1). To make

replacement decisions, this OPT implementation must scan the

contents of NA to find the destination vertex for which the

pull execution will next reference a particular source vertex

element in srcData 1. In the example (Figure 3; left), after

the first access to srcData[S1] while processing the incoming

neighbors of vertex D0, OPT sequentially scans the NA to find

that processing vertex D4 will re-reference srcData[S1]. In

the worst case, the entire NA may be scanned to find the next

reference (if any) of a srcData array element, resulting in

an extreme computational complexity of O(|Edges|) for each

replacement event.

Our main insight is that a graph’s transpose encodes the

future re-reference information for each vertex allowing similar

replacement as the OPT policy while incurring significantly

lower computational complexity. Our insight is based on

two observations about pull execution. First, a pull execution

sequentially visits each vertex and processes all of its incoming

neighbors (i.e., processing incoming neighbors of D0 before

moving on to incoming neighbors of D1). Second, a pull

execution processes the CSC for fast access to incoming

neighbors (adjacency matrix columns) and the transpose of

the graph (a CSR) allows quick access to outgoing neighbors

(i.e. adjacency matrix rows). A cache can easily determine

the next reference to srcData[S1] when it is first accessed

as an incoming neighbor of vertex D0. By accessing the

CSR, we can quickly learn that vertex S1 has two outgoing

neighbors – vertex D0 and D4 – and, hence, srcData[S1]

will only be accessed next while processing the incoming

neighbors of vertex D4. With the help of the transpose in the

efficiently traversable CSR format, the complexity of finding

the next future reference of a srcData element is reduced

to O(|OutDegree|), i.e., scanning the outgoing neighbors of a

vertex2. While this example describes a pull execution model,

conversely, a push execution model using a CSR can also

use its transpose (CSC) for estimation of next references to

irregular dstData accesses.

B. Transpose-based Optimal Replacement Performance

We show how knowledge of next reference information

estimated using a graph’s transpose is used to emulate

OPT. Figure 3 (center panel) shows a 2-way set-associative

cache in which each cache way can store only a single

element of srcData. In replacement scenario A , the cache

has just incurred the cold misses for srcData[S1] and

srcData[S2] and now needs to insert srcData[S4]. The

cache must decide: will the execution access srcData[S1]
or srcData[S2] further in the future? By scanning the

outgoing neighbors of vertex S1 (i.e. S1’s row in the adjacency

matrix), we can determine that S1 will be accessed next when

processing the neighbors of vertex D4. Similarly, the transpose

informs us that S2 will be accessed next when processing

incoming neighbors of vertex D1. Therefore, to emulate OPT

1By virtue of visiting each element only once, streaming data (like
dstData) have a fixed re-reference distance of infinity.

2Real-world graphs typically have an average degree of 4-32 which is orders
of magnitude lower than the number of graph edges (order of 100M-1B).
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rows of adjacency matrix) encoded in the transpose (CSR) enables efficient emulation of OPT.

we must evict srcData[S1] because its next reuse is further

into the future than srcData[S2]. Replacement scenario B

(Figure 3; right panel) considers the execution two accesses later

when the pull execution is processing the incoming neighbors

of vertex D1 and needs to cache srcData[S3]. The transpose

informs that the next re-reference of vertex S2 is further into

the future and OPT evicts srcData[S2].

Fig. 4: Transpose-based Optimal replacement (T-OPT)
reduces misses by 1.67x on average compared to LRU.

We studied the effectiveness of the transpose-based OPT

(which we refer to as “T-OPT”) on graph applications by

measuring the reduction LLC misses compared to the replace-

ment policies introduced previously. Figure 4 shows that T-

OPT reduces LLC MPKI for the PageRank workload. T-OPT

significantly reduces LLC MPKI compared to LRU and other

policies, achieving a 41% miss rate for PageRank (compared

to a 60-70% miss rate for other policies). The main reason

for the improvement is that, unlike other replacement policies,

T-OPT does not use a heuristic to guess the re-reference pattern.

Instead, T-OPT uses precise information of future reuse encoded

in the graph’s transpose to make better replacement decisions.

C. Limitations of Transpose-based Optimal Replacement

The benefits of T-OPT shown in Figure 4 are idealized,

ignoring the costs of accessing transpose data to make re-

placement decisions. A key challenge posed by T-OPT is that

naively accessing the transpose imposes an untenable run time

overhead and cache footprint.

Increased Run Time: Finding the next reference of a vertex

incurs a complexity of O(|d|) where |d| is the out-degree of

the vertex. The cost of finding the next reference compounds

when the granularity of graph data allows multiple vertices to

fit in a cache line. Therefore, finding the next reference of a

line involves finding the next reference of each vertex in the

line (and reporting the minimum of these values).

Increased Memory Accesses: Computing the next reference

of each line requires accessing the transpose of cache-resident

vertices involved in replacement. Since the vertices resident

in cache can be arbitrary, the neighbor lookups using the

Offset Array (OA) and Neighbor Array (NA) of the transpose

(Figure 1) incur additional irregular memory accesses that

increase cache contention with graph application data.

IV. P-OPT: PRACTICAL OPTIMAL REPLACEMENT

The main contribution of this work is P-OPT, a transpose-

based cache replacement policy and architecture implementa-

tion that brings virtually all of the benefits of transpose-based

OPT (T-OPT) without its overheads. P-OPT uses a specialized

data structure (called the Rereference Matrix) for fast access

of re-reference information available in a graph’s transpose

without incurring T-OPT’s overheads.

A. Reducing the Overheads of T-OPT

Quantizing Re-reference Information: P-OPT reduces the

cost of making a replacement decision by quantizing the graph’s

transpose. By virtue of using the transpose, the range of next
references for a vertex in T-OPT spans the entire vertex ID

space (typically a 32-bit value). We observe that using only a

few (e.g. 8) significant bits of the vertex ID space is sufficient to

approximate T-OPT. By quantizing next references into fewer,

uniform-sized epochs, P-OPT reduces the size of next reference

information. Figure 5 (left panel) shows how the next references

in our example pull execution have been quantized to three

epochs (with each epoch spanning two vertices). Quantization

reduces the range of next references for each vertex (spanning

Epoch-0 to 2), unlike T-OPT where the next reference spans

the entire range of vertices in the graph (D0 to D4).

Rereference Matrix: A Rereference Matrix is a quan-

tized encoding of a graph’s transpose with dimensions

{numCacheLines x numEpochs}. numCacheLines is

the number of lines spanned by the irregularly accessed graph

data (i.e. srcData for the pull execution in Algorithm 1).

numEpochs is determined by the number of bits required to

store quantized next references. Figure 5 shows the Rereference

Matrix for the running example. The number of cache lines in
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Fig. 5: Reducing T-OPT overheads using the Rereference
Matrix: Quantizing next references into cachelines and a small
number of epochs reduces the cost of accessing next references.

the Rereference Matrix is equal to the number of vertices as a

cache line stores a single srcData element in Figure 3. Each

Rereference Matrix entry stores the distance to the epoch of a

cache line’s next reuse, which is the difference between the

epoch of its next reuse and the current epoch. For example, at

Epoch 0, the srcData[S0] cache line (C0) will be accessed

in the next epoch; its entry is 1. At epoch 1, srcData[S0] is

accessed so the C0 entry is 0, indicating an access in the current

epoch. At epoch 2, srcData[S0] has no future re-reference

and C0’s entry is set to a sentinel value (e.g. maximum value

(M) indicating next reference at infinity).

Using the Rereference Matrix, P-OPT approximates T-OPT

while avoiding T-OPT’s overheads in two key ways. First,

P-OPT stores a next reference per cache line, not per vertex.

Instead of traversing the neighbors of each vertex in a cache

line (as in T-OPT), P-OPT need only look up a single next

reference for the cache line in O(1). Second, P-OPT reduces

cache contention because only a single epoch (i.e. column)

of the Rereference Matrix needs to be resident in the cache

at a time. When the execution transitions to a new epoch,

P-OPT caches the next epoch of the Rereference Matrix, which

contains updated next references for all lines. For a graph of

32 million vertices, 64B cache lines, and 4B per srcData
element, 8-bit quantization yields a Rereference Matrix column

size of 2MB (2M lines * 1B), consuming only a small part of

a typical server CPU’s LLC.

B. Tolerating Quantization Loss

Quantizing next references in the Rereference Matrix is

lossy. Figure 5 shows that the Rereference Matrix encodes the

distance to the epoch of a cache line’s next reference. Only

inter-epoch reference information is tracked and an execution

cannot identify a cache line’s final reference within an epoch,

which can lead to incorrect replacement decisions. After a

cache line’s final access in an epoch, the zero entry in the

Rereference Matrix indicates that the cache line will still be

accessed in that epoch, but it will not be. To be more accurate,

the next reuse of the cache line should be updated after the

final access in an epoch.

P-OPT uses a modified Rereference Matrix entry structure

that encodes inter-epoch and intra-epoch information. Figure 6

shows a Rereference Matrix entry with 8-bit quantization. Each

1b 7b

Rereference Matrix Entry

MSB
MSB == 0

MSB == 1

Cacheline Referred in this epoch
(7 bits encode last Reference within Epoch)

No reference this epoch
(7 bits encode distance to next Epoch)

Inter/Intra Epoch Info

Fig. 6: Modified Rereference Matrix design to avoid quan-
tization loss: Tracking intra-epoch information allows P-OPT
to better approximate T-OPT.

Rereference Matrix entry’s most significant bit records whether

the cache line will be accessed in the epoch. If the cache

line is not accessed in the epoch, the MSB is set to one and

the remaining lower bits encode the distance (in epochs) to

the cache line’s next reference. If the cache line is accessed

within the epoch, the MSB is set to zero and the remaining

lower bits encode when the final access to the cache line will

happen in the epoch. To encode final access, P-OPT divides the

vertices spanned in a epoch into equal-sized partitions called

“sub-epochs”. The number of sub-epochs in an epoch is equal

to the maximum value representable with the remaining lower

bits of a Rereference Matrix entry (127 in this example). When

the MSB value is zero, the Rereference Matrix entry encodes

a cache line’s final access sub-epoch, referring to the partition

of vertices within the epoch during which a cache line’s final

access occurs.

Algorithm 2 Finding the next reference via Rereference Matrix

1: procedure FINDNEXTREF(clineID,currDstID)
2: epochID← currDstID/epochSize
3: currEntry← RerefMatrix[clineID][epochID]
4: nextEntry← RerefMatrix[clineID][epochID+1]
5: if currEntry[7] == 1 then
6: return currEntry[6 : 0]
7: else
8: lastSubEpoch← currEntry[6 : 0]
9: epochStart← epochID∗epochSize

10: epochOffset← currDstID−epochStart
11: currSubEpoch← epochOffset/subEpochSize
12: if currSubEpoch≤ lastSubEpoch then
13: return 0
14: else
15: if nextEntry[7] == 1 then
16: return 1 + nextEntry[6 : 0]
17: else
18: return 1

Pre-computing P-OPT’s modified Rereference Matrix is

a low-cost preprocessing step that runs before execution

(Section VII-D). During an execution, the modified Rereference

Matrix requires some additional computation to find a cache

line’s next reference. Algorithm 2 shows the computation to

find next references with 8-bit quantization. To find the next

reference of cache line (clineID) in Epoch epochID (which

is defined by currDstID for pull executions), P-OPT checks

the MSB of the cache line’s Rereference Matrix entry for

the current epoch (currEntry) (Line 5). If the MSB of

currEntry is set, then the cache line will not be accessed in

the current epoch and the lower 7 bits of currEntry encode

the epoch of the cache line’s next reference (Line 6). However,

if the MSB is unset, then the cache line is accessed in the

current epoch. The lower 7-bits of currEntry track the final
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sub-epoch during which the execution accesses the cache line.

Using the vertex ID currently being processed (currDstID
in a pull execution), the computation checks if the execution

is beyond the final reference to the cache line in the epoch

(Lines 8-12). If execution is yet to reach the sub-epoch of

the final reference to the cache line, the computation returns

with a rereference distance of 0 (i.e., the cache line will be

re-used during the current epoch). However, if execution has

passed the sub-epoch of the last reference to the cache line,

then the Rereference Matrix entry of the cache line for the next
epoch (nextEntry) encodes the epoch of the cache line’s

next reference (Line 4). If the MSB of nextEntry is unset,

then the cache line is accessed in the next epoch (Line 18)

(i.e., a rereference distance of 1). If the MSB of nextEntry
is set, then nextEntry’s low order bits encode the distance

to the epoch of the cache line’s next reference (Line 16).
The new Rereference Matrix has two key distinctions. First,

finding a cache line’s next reference may require accessing

the current and next epoch information. This double lookup

requires fast access to two columns of the Rereference Matrix

at each point in time. Second, P-OPT hijacks the MSB of

an entry to distinguish between inter-epoch (distance to next

epoch) and intra-epoch (final access sub-epoch) tracking which

the comes at the cost of halving the range of next reference

epochs tracked.

Fig. 7: Tracking inter- and intra-epoch information in the
Rereference Matrix allows P-OPT to better approximate
T-OPT: The P-OPT designs reserve a portion of the LLC to
store Rereference Matrix column(s) whereas T-OPT is an ideal
design that incurs no overhead for tracking next references.

We implemented two versions of P-OPT using the dif-

ferent Rereference Matrix designs in our cache simulator

and compared their effectiveness to DRRIP and T-OPT. The

P-OPT version that uses the first Rereference Matrix design

is P-OPT-INTER-ONLY (Figure 5). The P-OPT version that

uses the modified Rereference Matrix design (Figure 6) to

track both intra- and inter-epoch reuse information is P-OPT-

INTER+INTRA. Figure 7 shows the reduction in LLC misses

on PageRank achieved by the different policies relative to

DRRIP. Both the P-OPT versions achieve miss reduction over

DRRIP highlighting that reserving a small portion of the LLC to

drive better replacement is a worthwhile tradeoff. Furthermore,

P-OPT-INTER+INTRA is able to achieve LLC miss reduction

close to the idealized T-OPT that incurs zero overheads to

access the graph transpose. We adopt P-OPT-INTER+INTRA

as the default P-OPT design for the rest of the paper, due its

effectiveness as a close approximation of T-OPT.

V. P-OPT ARCHITECTURE

P-OPT is an architecture that uses Rereference Matrix data

stored within a small portion of the LLC to perform better cache

replacement. This section first presents a simplified single-core,

Uniform Cache Access (UCA) architecture implementation of

P-OPT, supporting a single, irregularly-accessed data structure.

Later, we show how P-OPT fits in a multi-core, NUCA

architecture and supports multiple irregular access streams.

A. Storing Next References in LLC

P-OPT stores the current and next epoch columns of the

Rereference Matrix within the LLC to ensure fast access of

next reference information during cache replacement. P-OPT

uses way-based cache partitioning [27] to reserve the minimum

number of LLC ways that are sufficient to store the current

and next epoch columns of the Rereference Matrix. Using the

default 8-bit quantization, enough ways need to be reserved

as to be able to store 2 ∗ numLines ∗ 1B where numLines is

the number of cache lines spanned by the irregularly-accessed

data (numLines= numVertices
elemsPerLine ). Figure 8 shows some LLC ways

reserved for current (orange) and next (blue) epoch columns

of the Rereference Matrix. P-OPT organizes the Rereference

Matrix columns in LLC for easy access of next reference data.

Within a reserved way, consecutive cache-line-sized blocks of

a Rereference Matrix column are assigned to consecutive sets.

After filling all the sets in one way, P-OPT fills consecutive

sets of the next reserved way. P-OPT stores cache lines

of the next epoch column of the Rereference Matrix right

after the current epoch column (Figure 8). Therefore, P-OPT

maintains two hardware registers for each epoch – way-base
and set-base – to track the starting positions of the two

Rereference Matrix columns within reserved ways of the LLC.

Effective
LLC�

Capacity

0-63
64-127

Last

...
..

Reserved Ways

0-63

64-127
.. .. ..

RerefMatrix[:][Ek]
RerefMatrix[:][Ek+1].. .. ..

iirrrreeggDDaattaa ccaacchhee lliinnee
CacheLineID

Set OffsetWay Offset Block Offset
6 bitslog2(|Sets|) bits

Way Base

Way Base

Set Base

Set Base

CurrPtr

NextPtr
LLLLCC

....
..

Last

Fig. 8: Organization of Rereference Matrix columns in the
LLC: P-OPT pins Rereference Matrix columns in the LLC.

The Rereference Matrix data organization within the LLC

allows P-OPT to easily map irregularly accessed data (hence-

forth referred to as irregData) to their corresponding

Rereference Matrix entries. The irregData array spans

multiple cache lines consecutively numbered with an ID from

0 to numLines− 1. P-OPT uses the irregData cache line

ID to find the unique location of the Rereference Matrix entry

within the LLC. With P-OPT’s default 8-bit quantization, a

typical cache line of 64B contains 64 entries of a Rereference

Matrix column. The low 6 bits (log2(64)) of the cache line ID

provides an offset within a cache line of Rereference Matrix

data. The next log2(numSets) bits of the cache line ID provides

a set offset and the remaining cache line ID bits provide a way

offset. The final set and way location of a Rereference Matrix

entry for an irregData cache line is determined by adding
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the set and way offsets to the set-base and way-base
registers of the required epoch 3.

B. Identifying Irregular Data

P-OPT needs to access the Rereference Matrix data only for

irregData lines (since all other accesses are streaming in

Algorithm 1). P-OPT maintains two registers – irreg_base
and irreg_bound – to track the address range of a graph

kernel’s irregData (Figure 9). During cache replacement,

P-OPT compares the address in the tag portion of each way

in the eviction set against irreg_base and irreg_bound
registers to determine if the way contains an irregData
cache line. The irreg_base and irreg_bound registers

must track physical addresses as P-OPT reasonably assumes

that LLC is a Physically-Indexed Physically-Tagged (PIPT)

cache. P-OPT sidesteps the complexity of address translation by

requiring that the entire irregData array fits in a single 1GB

Huge Page [45]. By ensuring that all irregData elements

map to a single (huge) page, P-OPT guarantees that the range

of physical addresses associated with irregData array lie

strictly within the range of physical addresses represented by

irreg_base and irreg_bound. Software configures the

two registers once at the start of execution using memory-

mapped registers. Allocating irregData using a 1GB Huge

Page uses widely-available system support [45] and allows

processing sufficiently large graphs with up to 256 million

vertices (assuming 4B per irregData element). To support

larger graphs, P-OPT could incorporate prior proposals [26],

[41] that provide system support to ensure identity mapping

between physical and virtual addresses for important data

structures (such as irregData).

CCoorere
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LL22

IrregAddr Base/Bound

currVertex
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[:]
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LLC Ways
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Reserved Ways

Eviction Set

LLLLCC

next-ref Buffersnext-ref
engine DDRRAAMM

RM
[:]

[:]next-ref
Streaming

Engine

�Reref Matrix

Fig. 9: Architecture extensions required for P-OPT: Com-
ponents added to a baseline architecture are shown in color.

C. Finding a Replacement Candidate

P-OPT maintains a small number of buffers (called

next-ref buffers) at the LLC to keep track of the

next references of each way in the eviction set (Figure 9).

A next-ref buffer tracks an 8-bit next reference entry

for each (non-reserved) way in the LLC. At the start of a

cache replacement, P-OPT assigns a free next-ref buffer

3For non power-of-two number of sets: WayOffset= (cachelineID>>6)
numSets and

SetOffset = (cachelineID>> 6) % numSets.

to the eviction set. To find a replacement candidate, P-OPT

uses a Finite State Machine (called the next-ref engine)

to compute the next reference of each non-reserved way in

the eviction set and the next-ref engine stores next

references in the corresponding entry of the next-ref
buffer. The next-ref engine skips computing next

references for the ways reserved for Rereference Matrix

columns because P-OPT never evicts Rereference Matrix data.

Among non-reserved ways, the next-ref engine uses the

irreg_base and irreg_bound registers to first search

for a way that does not contain irregData (i.e. contains

streaming data). The next-ref engine reports the first

way in the eviction set containing streaming data as the

replacement candidate. If all ways in the eviction set contain

irregData, then the next-ref engine runs P-OPT’s

next reference computation (Algorithm 2) for each way. The

next reference computation of an irregData cache line

requires the cache line ID of the irregData and the vertex

ID currently being processed in the outer loop of a graph

application (e.g. dstID for pull executions). The cache line

ID of the irregData line is determined by the next-ref
engine using simple address arithmetic (cachelineID =
(addr−(irreg base))

64 ). The current destination being processed

by a pull execution is tracked in a currVertex register

located at the LLC (Figure 9). The currVertex register

is updated by a new update_index instruction which

allows software to pass graph application information (i.e.

current vertex) to the LLC. The constants used in finding

next reference of a cache line (epoch and sub-epoch size)

are stored in special memory mapped registers co-located

at the LLC and are configured once before the execution.

(For 8-bit quantization, E pochSize = ceil(numVertices/256)
and SubE pochSize = ceil(E pochSize/127)). With all the nec-

essary information (cache line ID, currDstID, constants), the

next-ref engine computes next references by accessing

Rereference Matrix entries for each irregData line in

the eviction set; storing the computed next references in

the next-ref buffer. The next-ref engine then

searches the next-ref buffer to find the way with the

largest (i.e., furthest in future) next reference value, settling a tie

using a baseline replacement policy (P-OPT uses DRRIP). The

next-ref engine starts its computations immediately after

an LLC miss, overlapping the replacement candidate search

with the fetch from DRAM. A P-OPT implementation could

pipeline computing a next reference from a way’s Rereference

Matrix entry with fetching the Rereference Matrix entry for

the next way. DRAM latency hides the latency of sequentially

computing next references for each way in the eviction set,

based on LLC cycle times from CACTI [42] (listed in Table I).

D. Streaming Rereference Matrix columns into the LLC

P-OPT stores current and next epoch columns of the

Rereference Matrix in the LLC. At an epoch boundary, P-OPT

streams in a new next epoch column and treats the previous next

epoch column as the new current epoch column. To transfer

Rereference Matrix entries from memory to LLC, P-OPT uses
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a dedicated hardware unit called the streaming engine
similar to existing commodity data streaming hardware (Intel

DDIO [16], [22] allows ethernet controllers to directly write

data into an LLC partition). The programmer invokes the

streaming engine at every epoch boundary using a

new stream_nextrefs instruction. The instruction swaps

pointers to the current and next epoch (Figure 8) and streams

in the next epoch column of the Rereference Matrix into the

LLC locations pointed by set-base and way-base for the

next epoch. Graph applications need to be restructured slightly

to ensure that the streaming engine is invoked between
two epochs (to ensure that all epochs operate on accurate Reref-

erence Matrix data). Doing so does not impose a performance

penalty because the streaming engine is guaranteed peak

DRAM bandwidth to transfer Rereference Matrix data between

epochs. Moreover, streaming engine latency is not a

performance problem because epoch boundaries are infrequent.

E. Supporting NUCA Last Level Caches

While our discussion so far assumed a monolithic, UCA LLC,

P-OPT is also efficient for the increasingly common NUCA

LLCs [33]. We consider Static NUCA (S-NUCA) [37] with

addresses statically partitioned across physically-distributed

banks. The key NUCA challenge is to ensure that Rereference

Matrix accesses during replacement are always bank-local.

A typical S-NUCA system stripes consecutive cache lines

across banks (bankID = (addr>> 6)%numBanks). Striping

both Rereference Matrix and irregData cache line across

banks cannot guarantee bank-local accesses to Rereference

Matrix data at replacement time because a single cache

line of Rereference Matrix data contains next references for

64 irregData cachelines (Figure 8). Ensuring bank-local

Rereference Matrix accesses requires that for every Rereference

Matrix cache line mapped to a bank, all 64 of its corresponding

irregData cache lines must also map to the same bank.

P-OPT uses a modified mapping to distribute Rerefer-

ence Matrix entries and irregData across NUCA banks.

If P-OPT stripes Rereference Matrix cache lines across

banks, the system must interleave irregData in blocks

of 64 cache lines across NUCA banks (i.e. bankID =
(addr>> (6+6))%numBanks). P-OPT implements this mod-

ified mapping policy for irregData using Reactive-

NUCA [25] support. Reactive-NUCA allows different address

mapping policies for different pages of data through simple

hardware and OS mechanisms. P-OPT uses the modified

mapping policy only for irregData (which P-OPT assigns

to a single 1GB Huge Page) and uses the default, cache line

striped S-NUCA policy for all other data (including Rereference

Matrix data).

P-OPT needs minor hardware changes for NUCA LLCs.

First, P-OPT needs a per-bank copy of the registers used to

track Rereference Matrix columns (set-base, way-base,

currPtr, nextPtr in Figure 8). Second, the irreg_base,

irreg_bound, and currVertex registers are global values

that need to be shared or replicated across NUCA banks. Last,

P-OPT needs per-bank next-ref engine and next-ref

buffers, because multiple banks may be concurrently evict-

ing cache lines.

F. Generalizing P-OPT

With simple extensions, P-OPT supports multi-threading,

multiple irregularly-accessed datastreams, and context switches.

Supporting Parallel Execution: P-OPT supports parallel

multi-threaded execution. In a multi-threaded execution, multi-

ple active vertices are being traversed at a time (i.e., a unique

currDstId for each thread) and P-OPT needs to select one of

the active vertices for next reference computation (Algorithm 2;

Lines 8-12). Thanks to pervasive, existing load balancing

support in graph processing frameworks, different threads

already process vertices in a narrow range. To guarantee that

all threads always process vertices in the same epoch, P-OPT

requires slight modification of the application to execute epochs

serially (vertices within an epoch are executed in parallel).

Executing epochs serially allows P-OPT to share the same

Rereference Matrix columns across all threads. Due to the

relatively small number of epochs (256 in the default P-OPT

configuration) each epoch consists of a large number of vertices

and restricting parallelism to only within epochs does not

significantly impact performance. We empirically determined

that assigning currDstID to be the vertex being processed

by a software-designated main thread is an effective policy;

providing similar LLC miss rates with P-OPT and T-OPT for

multi-threaded graph applications as for serial executions.

Handling Multiple Irregular Data Streams: P-OPT can sup-

port multiple irregular data structures using three architecture

changes. First, P-OPT holds a separate Rereference Matrix

for each irregular data structure (only if the irregular data

structures span different number of cache lines, otherwise a

single Rereference Matrix can be shared). Second, P-OPT

reserves the minimum number of ways in the LLC to hold

the Rereference Matrix data for all the different irregular data

structures. The system maintains a separate set-base and

way-base register for each irregular data structure. Third,

P-OPT maintains an irreg_base and irreg_bound regis-

ter for each irregular data structure to use the right Rereference

Matrix data corresponding to each data structure. We observe

that tracking two irregular data structures – frontier and

srcData/dstData (for pull/push executions) – covers many

important graph applications. If an application has more

irregular data streams (which is rare), a programmer could re-

structure the code to use an Array-of-Structures (AoS) format,

combining all irregular accesses to a single array.

Virtualization: The Rereference Matrix in P-OPT only tracks

reuse among graph application data. If applications share LLC,

P-OPT may unfairly prefer caching graph data over other

data. To remain fair, we assume per-process way-partitioning

(i.e., via Intel CAT [27]) and that P-OPT only replaces

data in the graph-process-designated LLC ways. P-OPT sup-

ports context switches, by saving its registers (set-base,

way-base, irreg_base, irreg_bound, currVertex)

with the process context. On resumption, P-OPT invokes the

streaming engine to refetch Rereference Matrix contents
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into reserved LLC ways. Static partitioning of the cache

ensures that P-OPT does not monopolize the shared LLC in

the presence of multiple co-running applications. Alternatively,

P-OPT can be synergistic with existing application-aware
shared cache management policies [29], [30], [48]. Studying

these interactions are beyond the scope of this paper and left

for future work.

G. Implementation Complexity

P-OPT has low architectural complexity. P-OPT stores the

replacement metadata (Rereference Matrix columns) within the

LLC and, hence, does not require additional storage for track-

ing next references. P-OPT adds next-ref buffers to

temporarily store next references during replacement. The size

of next-ref buffers state is bounded by the maximum

cache-level parallelism at the LLC. For example, an 8-core

architecture supporting 10 outstanding L1 misses (i.e. 10 L1

MSHRs) allows 80 concurrent LLC accesses. Each next-ref
buffer tracks 1B per LLC way. For a 16-way LLC, each

next-ref buffer tracks 16B of information. Therefore,

a worst case maximum size for next-ref buffers is

1.25KB (80 * 16B). In practise, fewer next-ref buffers
would be sufficient because graph applications lack memory-

level parallelism [9], [56]. The next-ref engine is a

simple FSM that only needs support for integer division and

basic bit manipulation.

VI. EXPERIMENTAL SETUP

Platform details: We use the Sniper [13] simulator to

measure performance, using its default Beckton microarchi-

tecture configuration (which is based on Intel Nehalem).

Table I describes our baseline multi-core architecture, with

cache timing from CACTI [42]. We disable prefetching in

our study because prior work [8] observed that conventional

stream prefetchers are ill-suited to handle the irregular memory

accesses dominating graph applications. We made several

improvements to sniper to better model P-OPT’s performance

effects. We ensure that a graph application in P-OPT sees

reduced effective Last Level Cache capacity and apply P-OPT’s

modified S-NUCA policy for irregular data structures. We

model contention between demand accesses and Rereference

Matrix accesses within the NUCA banks. When reporting

P-OPT performance numbers, we also account for the latency

of the streaming engine to bring Rereference Matrix

columns into the LLC before every epoch. To faithfully model

this stop-the-world event, we slightly modify parallel graph

applications to process epochs serially and use parallelism only

within epochs (only P-OPT executions use the modified version

while all the other policies operate on unmodified versions of

parallel graph applications).

For faster design space exploration, we built a Pin [36]-

based cache simulator4 to model the cache hierarchy in Table I

and to evaluate various LLC replacement policies. The P-OPT

and T-OPT results reported earlier in the paper came from

4https://github.com/CMUAbstract/POPT-CacheSim-HPCA21

Cores 8 OoO-cores, 2.266GHz, 4-wide issue, 128-entry ROB, Pentium
M Branch Predictor

L1(D/I) 32KB, 8-way set associative, Bit-PLRU replacement policy, Load-
to-use = 3 cycles

L2 256KB, 8-way set associative, Bit-PLRU replacement policy, Load-
to-use = 8 cycles

LLC 3MB/core, 16-way set associative, DRRIP replacement [30], Load-
to-use = 21 cycles (local NUCA bank), NUCA bank cycle time
= 7 cycles

NoC Ring interconnect, 2 cycles hop-latency, 64 bits/cycle per-direction
link B/W, MESI coherence

DRAM 173ns base access latency

TABLE I: Simulation parameters

this cache simulator. We validated our cache simulator against

Sniper (LLC statistics from the cache simulator were within 5%

of Sniper’s values). Unless specified, the cache-only simulator

models serial execution of graph kernels to avoid thread-

scheduling noise in Pin. The Sniper simulations evaluate

parallel graph applications.

Workloads: We use five graph applications from GAP [9]

and Ligra [50]. To avoid framework overheads, we re-wrote

Ligra benchmarks as stand-alone applications (which yielded

an average speedup of 1.55x over the original implementation).

PR [9] CC [9] PR-δ [50] Radii [50] MIS [50]

irregData ElemSz 4B 4B 8B & 1bit 8B & 1bit 4B & 1bit
Execution style Pull-

Only
Push-
Only

Pull-
Mostly

Pull-
Mostly

Pull-
Mostly

Transpose CSR CSC CSR CSR CSR
Uses frontier N N Y Y Y

TABLE II: Applications

These applications have a diverse set of graph access

patterns and properties (Table II). PageRank (PR) iteratively

updates per-vertex ranks until convergence. Connected
Components (CC) applies the Shiloach-Vishkin algorithm to

compute largest connected comoponents. PageRank-delta
(PR-δ ) is a frontier-based version of PageRank that only

updates vertices that have not converged. Radii is a frontier-

based application using concurrent BFS traversals to approxi-

mate a graph’s radius. Maximal Independent Set (MIS)

iteratively processes vertex subsets to estimate the maximal

independent set. PageRank-delta, Radii, and Maximal
Independent Set use direction-switching [11] and fron-

tiers encoded as bit-vectors. To reduce simulation time, we

simulate one PageRank iteration (it shows no performance

variation across iterations). For other applications, we use

iteration sampling like prior work [40], [41] and simulate a

subset of pull iterations in detail.

Input Graphs: We run our analyses on the graphs listed in

Table III. The graphs are diverse in size and degree-distributions

(power-law, community, normal, bounded-degree). We do not

simulate Radii on HBUBL because its high diameter causes

Radii to never switch to a pull iteration.

DBP UK-02 KRON URAND HBUBL
# Vertices (in M) 18.27 18.52 33.55M 33.55M 21.20
# Edges (in M) 136.53 292.24 133.51 134.22 63.58

TABLE III: Input Graphs: All graphs exceed the LLC size.
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VII. EVALUATION

We evaluate P-OPT, showing significant performance and

locality improvements across a range of workloads and compare

P-OPT to prior work on efficient caching for graph workloads.

A. P-OPT Improves Performance

Figure 10 shows performance and cache locality improve-

ments achieved by P-OPT and an idealized T-OPT compared

to the LRU and DRRIP replacement policies. As discussed in

Section II-B, the state-of-the-art DRRIP replacement policy

offers an average performance improvement of only 9% relative

to the simple LRU policy due to its inability to capture graph

application-specific reuse patterns. P-OPT outperforms DRRIP

across the board, with average speedup of 22% and LLC miss

reduction of 24%. Furthermore, P-OPT’s mean speedup is

within 12% of the ideal speedup (with T-OPT).

Figure 10 shows four key findings. First, P-OPT is effec-

tive for applications with dense frontiers (PageRank and

Connected Components) and sparse frontiers (Radii,

Maximal Independent Set, and PageRank-delta).

P-OPT offers higher speedup for PageRank and Connected
Components because P-OPT needs to only store the Reref-

erence Matrix data for a single irregular data structure (other

applications need Rereference Matrix data for srcData
and frontier). Second, P-OPT improves performance and

locality for pull and push executions. Third, P-OPT provides

benefits for a diverse set of graphs. KRON is one exception with

both P-OPT and T-OPT offering slightly smaller improvement

over DRRIP. These synthetic KRON graphs have highly skewed

degree distributions. The more skewed the distribution, the

more likely it is for hub vertices to hit by chance in cache;

DRRIP has miss rate of 40% for KRON compared to a miss rate

of 70% for other graphs. Finally, P-OPT’s speedup compared

to DRRIP (22%) is significantly higher than state-of-the-art

policies like Hawkeye and SHiP. Hawkeye and SHiP report

average speedups of just 2.54% and 1.78% over DRRIP [28],

[53]. While Hawkeye and SHiP provide small benefits, P-OPT

leverages graph structure and offers a significant improvement

over DRRIP.

B. P-OPT Scales with Graph Size

P-OPT remains performant as graph size increases. P-OPT

stores the current and next epoch columns of the Rereference

Matrix in LLC (Figure 9). Larger graphs need to reserve more

LLC ways to store Rereference Matrix columns because the

irregular data spans more cache lines. We evaluate a P-OPT

variant, P-OPT-Single-Epoch (P-OPT-SE), that computes next

references using only the current epoch column of the Reref-

erence Matrix. P-OPT-SE encodes information about the next

epoch within the current epoch column by repurposing the

second most significant bit of an entry to track if the cache

line is accessed in the next epoch (Figure 6). P-OPT-SE stores

only the current epoch column in LLC. However, the reduced

cache footprint in P-OPT-SE comes at the expense of reduced

next reference quality. Down two bits per entry, the range of

next references tracked in P-OPT-SE is halved from 128 to 64

— P-OPT-SE is forced to use coarser quantization.

In Figure 11, we compare P-OPT-SE (one column, two

reserved bits) to P-OPT (two columns, one reserved bit) for

PageRank on a set of graphs. With fewer than 32 million

vertices, P-OPT has better LLC locality. For these graphs,

P-OPT reserves fewer than 3 ways of 16 and the benefit of

better replacement information (i.e. current and next epoch)

overshadows the reduction in effective LLC capacity. However,

in larger graphs, P-OPT-SE has better locality because of

P-OPT’s high reduction in effective LLC capacity. The result

highlights the tension between next reference quantization

and the effective LLC capacity; to improve upon P-OPT’s

performance gains, future solutions must reduce the metadata

footprint without significantly compromising the quality of

replacement metadata.

C. P-OPT compared to prior optimizations

We compared P-OPT to prior work on locality optimizations

for graph analytics.

1) Graph-agnostic improvements with P-OPT: Like prior

work [20], [40], P-OPT observes that cache locality is key to

improving graph processing performance. Unlike prior work,

P-OPT is graph-agnostic, not reliant on specific structure or

vertex ordering of a graph.

GRASP [20] is a replacement policy for graphs with very

skewed degree distributions. GRASP expects a pre-processed

input vertex array and GRASP uses Degree-Based Grouping

(DBG) [19] to order vertices. We reordered our graphs using the

author’s DBG implementation and implemented GRASP in our

cache simulator, based on code from the authors. Figure 12(a)

shows locality improvements from GRASP and P-OPT for

PageRank on DBG-ordered graphs. P-OPT outperforms

GRASP in three ways. First, GRASP works well for graphs

with skewed degree distributions, but is less effective for other

inputs; the best result for GRASP is for the highly skewed GPL
graph. P-OPT is agnostic to graph structure, offering consistent

improvement. Second, even for skewed graphs, P-OPT has

higher LLC miss reduction than GRASP because GRASP is

heuristic-based, assuming vertices with similar degrees have

similar reuse. P-OPT, instead, approximates ideal next reference

values capturing dynamically varied patterns of reuse. Last,

GRASP requires the input graph to be reordered (using DBG)

whereas P-OPT is applicable across any vertex ordering.

HATS-BDFS [40] is a dynamic vertex-scheduling architec-

ture that improves graph cache locality. HATS runs hardware

Bounded Depth First Search (BDFS) to schedule vertices,

yielding locality improvements in graphs with community

structure [34]. We implemented in our cache simulator an

aggressive HATS-BDFS that assumes no overhead for BDFS

vertex scheduling. Figure 12(b) compares P-OPT on the

standard vertex schedule (“Vertex Ordered” per HATS [40])

against HATS-BDFS. The data shows that HATS-BDFS’s

improvements are sensitive to graph structure. For its target use-

cases (i.e., community-structured graphs – UK-02 and ARAB),

BDFS offers locality improvements, even outpacing T-OPT
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Fig. 10: Speedups and LLC miss reductions with P-OPT and T-OPT: The T-OPT results represent an upper bound on
performance/locality because T-OPT makes optimal replacement decisions using precise re-reference information without
incurring any cost for accessing metadata. P-OPT is able to achieve performance close to T-OPT by quantizing the re-reference
information and reserving a small portion of the LLC to store the (quantized) replacement metadata.

Fig. 11: LLC miss reductions with P-OPT and P-OPT-SE:
Boxes above bar groups indicate the number of LLC ways
reserved to store next rereferences. Graphs are listed in
increasing order of number of vertices.

because BDFS improves locality at all cache levels. However,

for graphs without community structure (even power-law graphs

such as DBP and KRON), BDFS increases LLC misses. In

contrast, P-OPT offers consistent LLC locality improvements,

leading to a higher mean LLC miss reduction compared to

HATS-BDFS.

2) Optimizations Complementary to P-OPT: P-OPT com-

plements software graph locality optimizations – CSR-

Segmenting [57] and Propagation Blocking [10].

CSR-Segmenting [57] is 1D tiling for graphs. We applied

the CSR-segmenting optimization to the PageRank appli-

cation to study how P-OPT and CSR-segmenting interact.

Figure 13 shows relative cache performance of DRRIP and

P-OPT for two large graphs as tile count increases, with

results normalized to untiled DRRIP execution. Tiling improves

P-OPT’s miss reduction over DRRIP. P-OPT benefits because

tiling reduces the address range of random access allowing

P-OPT to store only a tile of a Rereference Matrix column

in LLC. Compared to DRRIP, P-OPT provides the same miss

reduction with fewer tiles: For URAND64, P-OPT with two

tiles has the same LLC miss reduction as DRRIP with 10
tiles. Thus, as tiling improves P-OPT, P-OPT amplifies the

efficiency of tiling by reducing required tile count and, hence,

the preprocessing costs (Preprocessing cost scales with tile

count because each tile requires building a CSR).

(a) P-OPT compared to GRASP

(b) P-OPT compared to HATS-BDFS

Fig. 12: P-OPT offers graph-agnostic improvements: In
contrast to prior locality optimizations for graph workloads,
P-OPT’s benefits are not restricted to specific structural
properties or vertex orderings of input graphs.

Fig. 13: P-OPT and Tiling are mutually-enabling optimiza-
tions: Tiling allows P-OPT to reserve fewer LLC ways while
P-OPT can reduce the preprocessing cost of tiling.

Propagation Blocking (PB) [10] is a software graph locality

optimization. Recent work [41] showed further improvements

at the expense of additional hardware support for PB. PHI [41]

improves graph applications with commutative vertex updates

by aggregating updates in-cache to reduce DRAM traffic.
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Fig. 14: P-OPT is complementary to PHI and PB

PHI is complementary to replacement and provides higher

benefits with better replacement policies (e.g., DRRIP over

LRU). We studied the PB and PHI interactions with P-OPT by

implementing PHI in our cache simulator (targeting a multi-

core setup). Figure 14 shows results for four setups on PB’s

dominant execution phase (Binning). The data show that PHI

improves locality over software PB (PB+DRRIP) and that PHI’s

effectiveness improves with better replacement. The original

PHI work did not evaluate on non-power-law graphs (e.g.,

URAND and HBUBL), which have worse private cache locality,

impeding PHI’s update aggregation, and leading to little benefit.

P-OPT, in contrast, is effective for these graphs, even when

PHI is not.

D. Sensitivity Studies

Sensitivity to quantization level: We assumed 8-bit next

reference entries up to this point. Figure 15 shows P-OPT’s

performance with 4-bit, 8-bit, and 16-bit quantization in the

Rereference Matrix. This dataset omits the costs of storing

Rereference Matrix columns in LLC, reporting limit-case

locality improvements for a given quantization level. Due to

quantization, multiple lines might have the same rereference

value during replacement leading to a tie (as described in

Section V-C, ties are resolved by a baseline replacement policy;

our evaluation assumes DRRIP). On average, we observe that

for P-OPT with 4b, 8b, and 16b quantization of rereferences,

41%, 12%, and 0% of all LLC replacements respectively result

in a tie. The already low percentage of replacement ties at

8b quantization explains why P-OPT sees little benefit with

higher precision.

Fig. 15: P-OPT at different levels of quantization: With 8-bit
quantization, P-OPT is able to provide a close approximation
of the ideal (T-OPT).

Sensitivity to LLC parameters: We measured P-OPT’s

sensitivity to LLC capacity and associativity. Figure 16 shows

data for PageRank across all graphs. The benefit offered by

P-OPT over DRRIP increases with LLC capacity because the

fraction of LLC consumed for Rereference Matrix columns

reduces. P-OPT also offers higher miss reduction with higher

LLC associativity. As associativity increases, P-OPT has

more options for replacement and makes a better choice by

considering next references of all ways in the eviction set.

Fig. 16: Sensitivity to LLC size and associativity: P-OPT’s
effectiveness increases with LLC size and associativity.

Preprocessing cost of P-OPT: P-OPT uses a Rereference

Matrix to guide cache replacement and the Rereference Matrix

is built from the transpose. The main performance results

(Figure 10) omitted preprocessing costs because the Rereference

Matrix is algorithm agnostic and needs to be created only

once for a graph. We experimentally determined that building

the Rereference Matrix imposes low overhead on a real 14-

core Intel Xeon processor (we used 8 threads and Intel

CAT to set the LLC to 24.5MB to mirror the simulated

architecture in Table I). Table IV shows time spent building

the Rereference Matrix compared to a baseline execution of

PageRank. On average, constructing the Rereference Matrix

accounts for 19.8% of PageRank runtime 5. Figure 10

shows that without the Rereference Matrix construction cost,

P-OPT offers a mean performance improvement of 36% over

DRRIP 6 for PageRank. Since the Rereference Matrix is

algorithm agnostic, the preprocessing cost of P-OPT can be

easily amortized by reusing the Rereference Matrix across

multiple applications running on the same graph. However,

even in scenarios where the Rereference Matrix construction

cost cannot be amortized (e.g., single-shot graph analytics), the

relatively small cost of constructing the Rereference Matrix

allows P-OPT to provide a net speedup even after including

the preprocessing cost.

DBP UK-02 KRON URND HBUBL
POPT Preprocessing Time 0.99s 1.25s 1.59s 1.77s 0.92s
PageRank Execution Time 8.83s 24.64s 4.84s 11.06s 0.89s

TABLE IV: Relative preprocessing cost for P-OPT

VIII. RELATED WORK

We compared P-OPT to the most closely related works

in Sections II and VII. We include additional comparisons

spanning three areas – cache replacement, irregular-data

prefetching, and custom architectures for graph processing.

Replacement Policies: Hawkeye and SHiP outperform many

classes of replacement policies [28], [53]. One such class

5HBUBL is an exception because PageRank converges unusually quickly
(3 iterations)

6Server-class processors have been shown to use a variant of DRRIP [52])
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of policies are policies like SDBP [32] and Leeway [21]

that perform Dead-Block Prediction (DBP) (i.e. find cache

lines that will receive no further accesses). P-OPT can more

accurately identify dead lines because it tracks next references

of irregular lines (Indeed, P-OPT outperforms Hawkeye and

GRASP which were shown to be better than SDBP and Leeway

respectively). By using close approximation of precise next

references (Section VII-D), P-OPT is expected to outperform

heuristic-based reuse distance predictions [17], [31].

Irregular Data Prefetching: IMP [54], HATS-VO [40], and

DROPLET [8] are recent prefetchers that were designed

primarily to handle irregular accesses in graph processing

and sparse linear algebra applications. All three schemes are

effective at reducing latency of irregular accesses but not

necessarily memory traffic. P-OPT reduces memory traffic

through better LLC locality, making better use of the available

DRAM bandwidth. We note that next references in a graph’s

transpose could also be used for timely prefetching of irregular

data. We leave the exploration of new prefetching mechanisms

derived from the Rereference Matrix and the interplay of P-OPT

with hardware-based [4], [8], [40], [54] or software-based [5]

irregular prefetching for future work.

Custom architectures for graph processing: Minnow [56]

is an architecture for efficient worklist management and

optimizes worklist-based graph applications [47]. OMEGA [3]

is a scratchpad-based architecture for graph processing on

power-law input graphs. Custom accelerators [24], [43] have

been proposed that optimize graph framework operations to

accelerate common sub-computations across all applications

using the framework. P-OPT observes the pervasiveness of

poor cache locality in graph applications and leverages the

readily-available transpose to guide better cache replacement.

SpArch [59], an SpGeMM accelerator, proposed dedicated

hardware to run ahead (upto a fixed depth) and compute next

references for irregular data. P-OPT also uses next references

for better replacement but relies on the transpose to more

efficiently access next references.

IX. CONCLUSIONS

The main insight of this work is that a graph’s transpose

succinctly encodes the next reference information of all

graph data, which enables transpose-driven Belady’s MIN

replacement policy (T-OPT) for graph analytics workloads.

We present P-OPT, a practical implementation of T-OPT, that

exploits quantization to efficiently store and access the next

reference information to make better replacement decisions.

Evaluations across a range of workloads and input graphs

show that P-OPT provides significant performance and locality

improvements compared to prior state-of-the-art replacement

policies and locality optimizations for graph analytics.
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