
NOMAD: Enabling Non-blocking OS-managed
DRAM Cache via Tag-Data Decoupling

Youngin Kim, Hyeonjin Kim, and William J. Song
School of Electrical and Electronic Engineering, Yonsei University, Seoul, South Korea

yiwkd2@yonsei.ac.kr, hyeonjin kim@yonsei.ac.kr, and wjhsong@yonsei.ac.kr

Abstract—This paper introduces a DRAM cache architecture
that provides near-ideal access time and non-blocking miss
handling. Previous DRAM cache (DC) designs are classified into
two categories, HW-based and OS-managed schemes. Hardware-
based designs implement non-blocking caches that can handle
multiple DC misses using MSHRs, but they have drawbacks in
metadata management since storing tags in on-package DRAM
significantly increases the effective cycle time of DC accesses. In
contrast, OS-managed schemes utilize PTEs for storing tags and
caching them in TLBs, which can achieve ideal DC access time.
However, they implement blocking caches that stall application
threads on misses until cache fills are completed. To overcome
the limitations of both HW-based and OS-managed schemes,
this paper introduces a DRAM cache architecture named Non-
blocking OS-managed DRAM cache (NOMAD). Unlike conven-
tional caches that guarantee the presence of data on tag hits,
NOMAD decouples tag and data management to enable non-
blocking miss handling in an OS-managed DRAM cache. The
front-end OS routines of NOMAD manage DC tags using PTEs
and TLBs, and its back-end hardware handles data management
in the DRAM cache. On a DC miss, the OS updates a tag,
offloads a cache-fill command to the back-end, and immediately
resumes an application thread without waiting for the cache fill
to complete. Instead, the back-end hardware handles the cache
fill without blocking the application thread. By decoupling tag
and data management in NOMAD, a tag hit does not necessarily
guarantee the presence of data in the DRAM cache. The back-
end traces which DC lines are still in transfers and checks if the
demanded part of a cache line has been transferred yet for every
DC access. Notably, this back-end procedure does not require an
OS intervention, thereby implementing a non-blocking DRAM
cache. Experiment results show that NOMAD reduces application
stall cycles by 76.1% and improves IPC by 16.7% over a state-
of-the-art OS-managed scheme.

I. INTRODUCTION

As emerging applications demand increasingly larger mem-
ory bandwidth and capacity, heterogeneous memory systems
pairing up high-bandwidth on-package DRAM with large-
capacity off-package memory [5], [8], [9], [14], [42], [46]
have been developed as promising solutions to overcome mem-
ory wall problems. To effectively utilize the heterogeneous
memory systems, previous studies proposed to architect on-
package DRAM as a cache [18], [24]–[26], [31], [39], [49],
[50]. The prior DRAM cache (DC) designs are classified into
two categories, HW-based and OS-managed schemes.

Hardware-based DRAM caches are implemented based on
the design principle of traditional data caches [13], [28]. They
operate as non-blocking caches that can handle multiple out-
standing misses using miss status/information holding registers

(MSHRs), which enable the caches to service subsequent
memory requests while the miss handling operations are
in progress. However, HW-based designs have fundamental
drawbacks in managing metadata (e.g., tags). Since the gross
size of DC metadata is too large to be stored in an SRAM
array, tags are stored in on-package DRAM for a scalable
implementation [24], [31], [39]. Such a design causes a DC
controller to spend a significant portion of memory bandwidth
on transferring the metadata to read tags, update control bits,
etc. The extra bandwidth consumption of on-package DRAM
increases the effective cycle time of DC accesses and thus
adversely affects the performance [10], [18], [19].

OS-managed DRAM caches [22], [29], [37] were proposed
to overcome the limitations of HW-based designs in the meta-
data management. OS-managed schemes expose on-package
DRAM to operating systems and store data at the page gran-
ularity via changes to address translation mechanisms. They
utilize a page table entry (PTE) to store a DC tag and retrieve
the information from a translation lookaside buffer (TLB)
to eliminate the overhead of metadata transfers from/to the
on-package DRAM, thereby providing ideal DC access time.
However, prior OS-managed designs have a critical limitation
in that they implement blocking caches, where application
threads are stalled while OS routines are handling DC misses.
On a DC miss, a miss handler allocates a cache frame and
also controls loading page data to the on-package DRAM.
During the miss handling procedure, an application thread is
suspended for thousands of cycles. As a result, OS-managed
DRAM caches suffer from severe miss penalties.

To resolve the problems of previous DRAM cache designs,
this paper proposes Non-blocking, OS-managed DRAM cache
(NOMAD). NOMAD as an OS-managed DRAM cache pro-
vides near-ideal DC access time by storing DC tags in PTEs
in a similar way as prior OS-managed schemes [22], [29]. But,
it allows non-blocking miss handling via a hardware support,
which can handle cache-fill operations without suspending
application threads. The primary limitation of prior DC designs
lies in that they have coupled tag and data management such
that a tag hit must guarantee the presence of data in the cache,
referred to as a data hit. In such a tag/data-coupled environ-
ment, an OS-managed scheme is bound to be a blocking cache
because a DC handler cannot resume an application thread
until a cache fill is completed to ensure a data hit on a tag
hit. In contrast, NOMAD effectively decouples tag and data
management by leveraging both OS and hardware features.

978-1-6654-7652-2/23/$31.00 ©2023 IEEE 193

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
20

23
 IE

EE
 In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

H
ig

h-
Pe

rf
or

m
an

ce
 C

om
pu

te
r A

rc
hi

te
ct

ur
e

(H
PC

A
) |

 9
78

-1
-6

65
4-

76
52

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
H

PC
A

56
54

6.
20

23
.1

00
71

01
6

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

SRAM
caches

Data

DC access
Metadata

On-package

DC miss
MSHRs

Off-package
memoryDC hit

Metadata update

Cache-fill

Fetch

Tag update

Non-blocking miss handling

Extended cycle �me

DRAM

(a) HW-based DRAM cache

On-package
DRAM

Metadata

TLBO
ff

se
t

V
P

N

OS

SRAM
caches

OS blocks
the applica�on

DC miss Tag update

PTEs

DC access

Ideal DC access �me

Off-package
memory

CA

V
ir

tu
al

 a
d

d
re

ss

(b) OS-managed DRAM cache

Fig. 1: (a) A HW-based scheme supports non-blocking miss handling using MSHRs. However, it stores DC tags in on-package
DRAM, which consumes memory bandwidth for reading and updating metadata. (b) An OS-managed scheme utilizes PTEs to
store DC tags, which can provide ideal DC access time. However, it suffers from a significant miss penalty since an application
thread is stalled while the OS handles the DC miss.

The proposed NOMAD scheme is comprised of two parts,
front-end OS routines and back-end hardware. On a DC miss,
the front-end only updates a PTE and TLB without waiting for
the cache fill to complete, and it resumes an application thread
immediately. Instead, a cache-fill command is offloaded to the
back-end hardware, where the outstanding miss is traced by
a page copy status/information holding register (PCSHR). By
allowing a swift restart on a DC miss and tracing multiple
misses using PCSHRs, the DRAM cache can service subse-
quent memory requests in a non-blocking manner. The back-
end concurrently executes cache-fill commands in PCSHRs
similar to MSHRs in traditional hardware caches. Since the
NOMAD front-end updates only a PTE and TLB, a TLB hit
does not guarantee the presence of page data in the DRAM
cache. To confirm the validity of page data, it requires looking
up PCSHRs on a DC access to check if the demanded page is
still in a transfer. No matched tags in the PCSHRs indicate that
the whole page data have been already fetched, or otherwise it
waits for the data block to arrive. Importantly, this procedure
does not involve an OS intervention. Referencing PCSHRs
adds a delay to the critical path of DC access time, but the
overhead is substantially smaller than consuming on-package
DRAM bandwidth to read and update the metadata of cached
pages in HW-based schemes. Also, NOMAD has an advan-
tage of minimizing miss handling latency via the back-end
hardware support by rapidly restarting thread executions and
tracing multiple outstanding misses in a non-blocking fashion.
Experiment results show that NOMAD reduces application
stall cycles by 76.1% and improves IPC by 16.7% on average
over a state-of-the-art OS-managed DRAM cache.

II. BACKGROUND AND MOTIVATION

To overcome the bandwidth and capacity challenges of
memory systems, heterogeneous memory systems utilizing
high-bandwidth on-package DRAM and large-capacity off-
package memory have been widely explored. To effectively
utilize the heterogeneous memory systems, prior studies pro-
posed to architect on-package DRAM as a cache [18], [22],
[24]–[26], [29], [31], [37], [39], [49], [50]. The previous
DRAM cache designs are classified into two categories, HW-
based and OS-managed schemes.

A. Hardware-based DRAM Caches

The key advantage of HW-based schemes is that they im-
plement non-blocking DRAM caches. As depicted in Fig. 1a,
a HW-based scheme employs several MSHRs to handle mul-
tiple misses at a time without impeding subsequent memory
requests. The non-blocking miss handling capability affects
several aspects of the DRAM cache performance. In particular,
it enables the DRAM cache to exploit memory-level paral-
lelism by concurrently tracing multiple outstanding misses.
By offloading miss handling to MSHRs, the DRAM cache
can proceed to service subsequent memory requests without
needing to wait for the preceding misses to complete before-
hand. Also, the HW-based scheme minimizes the effective
miss latency since a DC controller can send a response to
a last-level cache (LLC) as soon as a demanded data block
arrives from the off-package memory instead of waiting for
the entire cache line.

However, HW-based schemes have fundamental drawbacks
in managing metadata (e.g., tags, valid and dirty bits). Since
these bits are stored in on-package DRAM for scalable im-
plementations [24], [31], [39], accessing the metadata incurs
extra bandwidth consumption of the on-package DRAM as
illustrated in Fig. 1a with dashed lines. For every DC access,
a DC controller should retrieve a tag from the on-package
DRAM to determine whether the access is hit or miss. In
addition, all metadata updates (e.g., dirty, LRU bits) also
require the use of memory bandwidth [10]. Although the tag
serialization latency can be hidden by transferring a pair of
tag and data in a single burst [24], [39], the extra bandwidth
expenses increase the effective cycle time of DC accesses and
thus result in performance degradation.

B. OS-managed DRAM Caches

OS-managed DRAM caches [22], [29], [37] were proposed
to overcome the limitations of HW-based designs. An OS-
managed scheme exposes on-package DRAM to an operating
system and stores data at the page granularity as shown in
Fig. 1b. The caching mechanism of the OS-managed scheme
is enabled without modifications to a memory controller by
storing a DC tag (i.e., cache frame number) in a PTE and
retrieving it from TLBs. Since the OS-managed scheme can
directly obtain a cache address (CA) on a TLB hit, the memory

194Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Workload Characteristics

Class Abbr. Workloads RMHB
(GB/s)

LLC
MPMS

Memory
footprint (GB)

Excess
cact cactusADM [3] 43.8 486.6 11.9
sssp sssp [3] 38.8 511.1 2.3
bwav bwaves [16] 31.7 588.1 4.5

Tight

les leslie3d [16] 26.5 532.8 7.5
libq libquantum [16] 25.1 210.6 4.0

gems gemsFDTD [16] 24.8 269.2 6.3
bfs bfs [3] 23.1 298.5 2.4

Loose

cc cc [3] 13.5 183.1 2.3
lbm lbm [16] 12.4 270.5 3.2
mcf mcf [16] 12.2 472.0 2.8
bc bc [3] 10.8 533.7 1.3

Few

ast astar [16] 6.9 72.1 1.0
pr pr [3] 3.4 691.9 4.8

sop soplex [16] 1.7 310.2 1.2
tc tc [3] 1.66 226.3 2.3

0
7
14
21
28
35
42
49

0
0.2
0.4
0.6
0.8

1
1.2
1.4

pr bc mcf bwav sssp cact

G
B

/s

N
o

rm
al

iz
ed

 IP
C

Normalized IPC Required miss handling bandwidth
Few Loose Excess

Fig. 2: IPC of OS-managed DRAM cache [29] relative to that
of the HW-based design [24] for benchmarks exhibiting high
LLC MPMS in different workload classes.

bandwidth of on-package DRAM is not wasted on transferring
metadata, thereby providing ideal DC access time.

However, the OS-managed scheme implements a blocking
cache in that an application thread is stalled while the OS
handles a DC miss. On a DC miss, a miss handler allocates
a new cache frame and performs two tasks, tag and data
management. For the tag management, it records the mapping
information between a pair of physical and cache frames in
a kernel data structure, and a page frame number in the PTE
that was previously a physical frame number (PFN) is replaced
with a cache frame number (CFN), which serves as the tag
of the new cache frame. For the data management, the miss
handler executes a cache fill by copying page data from the
off-package memory to the DRAM cache. Since these two
tasks are processed while the application thread is suspended,
the DC miss is penalized by thousands of cycles mainly due
to the cache-fill execution.

C. Motivation

To demonstrate the effect of miss handling mechanisms
in different DRAM cache schemes, we chose tagless DRAM
cache (TDC) and the tag management mechanism of Unison
cache [24], which we call tags-in-DRAM (TiD), as represen-
tative OS-managed and HW-based designs, respectively. The
miss handling mechanisms of these schemes were modeled
using a cycle-level simulator [4], [30], [32] and tested with
various workloads from SPEC2006 [16] and GAP Benchmark
Suite (GAPBS) [3]. To evaluate inherent workload charac-
teristics, we measured the required miss handling bandwidth

(RMHB) of the off-package memory and last-level cache
misses per microsecond (LLC MPMS) for each workload
under an ideal OS-managed configuration. The stall time of the
blocking OS-managed scheme (i.e., TDC) should be propor-
tional to the RMHB metric, and the LLC MPMS manifests the
bandwidth consumption of on-package DRAM for metadata
accesses in the HW-based scheme (i.e., TiD). The benchmarks
are categorized based on their RMHB results into four classes
as shown in Table I. The Excess-class workloads have greater
RMHB than the available bandwidth, and thus they put strong
pressure on the off-package memory. Benchmarks of the Tight
class consume nearly all of the off-package memory bandwidth
for miss handling, and those of the Loose class need about a
half of the memory bandwidth. Lastly, Few-class benchmarks
use a negligible portion of the bandwidth for miss handling.

Fig. 2 plots the instructions per cycle (IPC) of TDC relative
to that of TiD for six benchmarks exhibiting high LLC MPMS
in Table I except for the les benchmark whose anomaly be-
havior is described in Section IV-B. The graph shows that the
OS-managed scheme (i.e., TDC) outperforms the HW-based
scheme (i.e., TiD) for workloads with low RMHB (i.e., pr, bc,
mcf). The HW-based design suffers from extended DC access
time due to substantial on-package DRAM bandwidth usage,
whereas the OS-managed scheme provides the benchmarks in
Few and Loose classes with the ideal DC access time. On
the contrary, the OS-managed scheme becomes inferior to the
HW-based design when it comes to high-RMHB benchmarks
in the Excess class since the severe miss handling latency of
the OS-managed scheme leads to performance degradation,
while the HW-based scheme with non-blocking miss handling
effectively tolerates a large number of DC misses.

III. NOMAD CACHE DESIGN

A. Decoupled Tag-Data Management Scheme

The primary limitation of prior OS-managed DRAM caches
is that application stalls are inevitable since the OS performs
cache fills on DC misses to ensure data hits on tag hits. We
refer to such a method as coupled tag-data management. To
enable a non-blocking OS-managed DRAM cache, this paper
proposes a decoupled tag-data management scheme. In the
decoupled scheme, tags and data are controlled in different
procedures, which implies that a tag hit does not necessarily
guarantee a data hit in the DRAM cache. On a DC miss,
the front-end OS routines of NOMAD update only a tag and
immediately resume a stalled application thread. Instead, a
cache-fill command is offloaded to the back-end hardware.
Although this requires verifying the presence of data on all
DC accesses through the back-end hardware, the decoupled
tag-data management allows non-blocking miss handling and
substantially reduces the miss handling latency.

B. Overall Structure

The proposed NOMAD scheme consists of two parts, front-
end OS routines and back-end hardware. The front-end man-
ages DC tags using PTEs and TLBs, which is implemented
in a similar way as previous OS-manged schemes [22], [29],

195Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

On-package
DRAM

DRAM cache tag
miss handler

Page
descriptors

DC tag miss

OffsetVPN
Virtual address

DC data hit

Offload cache-fill

DC access

TLB miss

TLB hit (DC tag hit)

Front-end Back-end

TLB

PTE

DC tag
update

SRAM
caches

Background
evic�on daemon

PCSHRs
Page
copy

buffer

Off-package
memory

So�ware rou�ne

DC tag hit

In
te

rf
ac

e

Offload
write-back

Fig. 3: The overall structure and memory access path of NOMAD, which consists of front-end OS routines and back-end
hardware. The front-end manages DC tags using PTEs and TLBs, and the back-end controls data management in the DRAM
cache (i.e., cache fill, writebacks, verifying data hits).

V PFNC

CPFN or CFN DCNC

NC DC⋯

PTE

Physical page descriptor
(page descriptor of physical frame)

Unused

Cache page descriptor
(page descriptor of cache frame)

Unused bits

Flags
8:09101151:1262:52

EX
63

TLB directory

Fig. 4: Page descriptor and PTE extension [1] in NOMAD.

[37]. The back-end governs data management (i.e., cache
fills, writebacks, verifying data hits), and its miss handling
architecture is implemented based on the design principle of
traditional non-blocking hardware caches [13], [28].

Fig. 3 illustrates the overall structure and memory access
path of NOMAD. As an OS-managed DC scheme, NOMAD
exposes the address space of on-package DRAM to the OS
and stores data at the page granularity. On a TLB miss, the
front-end examines a PTE to find if the page is cached. If
not, a new cache frame is allocated, and its cache-fill task is
offloaded to the back-end hardware. A DC tag miss handler
replaces a PFN in the PTE with a CFN, which serves as
the tag of the new cache frame. The mapping information
between the PFN and CFN is stored in a kernel data structure
called page descriptor. Then, the execution of an application
thread is immediately resumed. The front-end also includes a
background eviction daemon, which proactively evicts cache
frames from the DRAM cache. When a cache frame is evicted,
its PTE is restored with the original PFN from the page
descriptor. If the evicted page is dirty, the eviction daemon
offloads a writeback command to the back-end hardware.
More details of the cache frame management are presented
in Section III-C.

The NOMAD back-end allocates a PCSHR on receiving
a command from the front-end. The back-end concurrently
executes the cache-fill and writeback commands of PCSHRs,
and their page copy states are progressively updated. A DC
controller does not need to perform extra tasks to obtain a
cache address (CA) because a memory request is initiated with
a valid CA by referencing a TLB. However, a TLB hit does not
guarantee the presence of page data on a DC access because of
the decoupled tag-data management. Therefore, the back-end
looks up PCSHRs to check if a target data block is available. If

the DC access has no matched tags in any PCSHRs, it implies
that the whole page data have been already fetched to the on-
package DRAM, which is referred to as a data hit. Then, the
access can safely proceed to retrieve the data block from the
DRAM cache. If a PCSHR has a matched tag, the access is
regarded as a data miss, and handling this access depends on
the page copy status recorded in the PCSHR. If the demanded
part of the page has been fetched at least, the PCSHR can
service the request. Otherwise, it has to wait for the data to
arrive from the off-package memory.

C. Front-end OS Routines

Conventional operating systems manage page frames mainly
using two data structures, page tables and page descriptors
(a.k.a. PFN database in Windows [47]). Page tables are used
for virtual-to-physical address translations, and page descrip-
tors contain page frame information such as recently accessed,
shared states, etc. A part of the page frame information (e.g.,
present, permission) is also needed for address translations,
so a few of those bits are included in PTEs. Page descriptors
are used for memory management tasks in the OS (e.g.,
allocation, reclamation). The descriptors are organized as an
array and indexed by page frame numbers in that the array
is virtually and physically contiguous [7]. A heterogeneous
memory system such as NOMAD has to maintain two kinds
of page frames, physical and cache frames [29]. Similar to
traditional page frame management methods, the NOMAD
front-end manages page frames using page tables, physical
page descriptors (PPDs), and cache page descriptors (CPDs).

1) Page Descriptor and PTE Extension: Fig. 4 shows ker-
nel data structures for managing page frames. A PPD is
extended to append two additional bits, cached (C) and non-
cacheable (NC). The C bit indicates whether the page is cached
in the DRAM cache, and NC tells if the page is cacheable or
not. These two bits are also added to the unused field of a
PTE [1] since they are used for determining a DC tag miss
(i.e., cacheable but not cached) during an address translation.

A CPD contains the information for handling a cache frame
as shown in Fig. 4. A valid bit (V) indicates the validity of a
cache frame mapping, and a dirty-in-cache (DC) bit tells if a
writeback to the off-package memory is required for the cache
frame on eviction. Similar to dirty bits in conventional PPDs

196Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

Free Allocated In TLB

FIFO

Head Tail

Background
evic�on daemon

DRAM cache tag
miss handler

PTEs

CPDs

Evic�on flag

So�ware rou�ne

Cache frames

Fig. 5: The front-end manages cache frames in a FIFO manner
using a circular free queue. A DC tag miss handler allocates
cache frames from the head on demand, a background eviction
daemon proactively evicts victim frames from the tail.

Algorithm 1. DRAM Cache Tag Miss Handling Routine
Input: pte (page table entry), va (virtual address)
1: mutex_lock(&cache_frame_management_mutex)

/* Find free cache frame */
2: cpd = cache_page_descriptors[head]
3: while unlikely cpd.valid do
4: cpd = cache_page_descriptors[++head]
5: end while

/* Offload data management task to back-end */
6: send_cachefill(head, pte.page_frame_num, offset(va))

/* Tag management */
7: cpd.valid = true
8: cpd.pfn = pte.page_frame_num
9: pte.cached = true
10: pte.page_frame_num = head

/* Set eviction flag */
11: num_free_cache_frames--
12: if num_free_cache_frame < eviction_threshold then
13: eviction_flag = true
14: end if
15: mutex_unlock(&cache_frame_management_mutex)

and PTEs, the DC bit is also stored in a CPD and PTE. The
DC bit can be set on write accesses without extra overhead,
as conventional systems already do so for the dirty bits of
PPDs and PTEs [7]. The CPD also includes the PFN of a
physical frame mapped to the cache frame for reclamation.
Lastly, a TLB directory is used for TLB shootdown avoidance
[29], which traces whether the cache frame information resides
in TLBs. When the PTE of a cache frame is allocated to or
evicted from TLBs, corresponding bits in the TLB directory
are set or cleared, respectively. The OS utilizes the TLB
directory of CPDs when it searches for cache frames to evict
such that page frames whose address translation information
remains in TLBs are skipped to avoid the invocation of a TLB
shootdown protocol [6], [37].

2) Cache Frame Management: NOMAD employs a simple
first-in, first-out (FIFO) policy for replacing cache frames in
the OS-managed DRAM cache similar to TDC [29] because
other replacement policies such as least recently used (LRU)
require frequent access profiling, which incurs performance
degradation [7]. Despite the simplicity, the fully-associative
nature of the OS-managed design combined with the FIFO
replacement policy exhibits about 23% less DC misses on
average than a 16-way set-associative HW-based DRAM
cache using an LRU policy. Since HW-based designs in the
prior work [24], [49] could have only 4-way set-associative
structures because of scalability issues, engaging a FIFO
replacement policy in a fully-associated OS-managed DRAM

Algorithm 2. Background Eviction Routine
1: mutex_lock(&cache_frame_management_mutex)

/* Reset flag */
2: eviction_flag = false

/* Flush cache for data consistency */
3: flush_cache_range(tail,n) /* (start,victims) */

/* Evict pages */
4: for i = 0 to n − 1 do
5: cpd = cache_page_descriptors[tail]

/* Skip this page if it is in any of TLB. */
6: if unlikely cpd.tlb_directory != 0 then
7: tail++; continue
8: end if

/* Perform writeback for dirty victims */
9: if cpd.dirty-in-cache then
10: send_writeback(tail, cpd.pfn)
11: end if

/* Recover PTEs */
12: rmap = get_reverse_mapping(cpd.pfn)
13: for all pte in rmap do
14: pte.page_frame_num = cpd.pfn
15: end for
16: cpd.valid = false
17: num_free_cache_frames++
18: end for
19: mutex_unlock(&cache_frame_management_mutex)

cache is not necessarily a compromise. Thus, NOMAD utilizes
a FIFO policy and manages cache frames using a circular free
queue, which can be implemented as Fig. 5 with head and
tail pointers. In particular, cache frames are allocated from
the head on demand by a DRAM cache tag miss handler
and evicted from the tail proactively by a background eviction
daemon, which takes the eviction overhead out of the critical
path of the miss handler in a similar way as what conventional
operating systems do for managing physical frames [7].

3) DRAM Cache Tag Miss Handler: A DC tag miss is
detected during a page table walk if a page is cacheable but not
present in the DRAM cache. It invokes a DC tag miss handler
whose procedure is outlined in Algorithm 1. The miss handler
first examines the CPD of a cache frame pointed by the head
of the free queue to check its validity (line 2). The cache
frame can possibly be unfree because of past TLB shootdown
avoidance [29] as shown in Fig. 5, although it is very unlikely
to happen since the TLB coverage is much smaller than the
DRAM cache capacity. The head advances until a free cache
frame is found (lines 3-5). Once a free frame is found, a cache-
fill command is sent to the back-end hardware (line 6). The
original PFN is saved in the CPD, and the PTE is updated
with the new CFN and cached (C) bit set (lines 7-10). The
miss handler also tracks the number of free cache frames to
set an eviction flag, which will be handled by the background
eviction daemon (lines 11-14). Lastly, the NOMAD front-end
resolves the tag miss and resumes an application, even though
the data of the new cache frame may still be unavailable.

4) Background Eviction Daemon: The background eviction
daemon of NOMAD performs cache frame reclamation in a
FIFO manner as shown in Algorithm 2. The eviction proce-
dure is invoked when the DC tag miss handler sets the eviction
flag. To avoid frequent invocation of the background daemon,
it proactively evicts a series of cache frames at once; n in line 3
is a power of two for alignment. To evict cache frames, SRAM
cache lines containing the data of victim frames are invalidated

197Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

Interface

V T P

V

⋮

Su
b

-en
tries

PCSHR 1

PCSHR 2
⋮

PCSHR n

Front-end
SI

V

V

PFN PICFN

S T PFN CFN Offset

R

Comparator

⋮

⋮

DRAM cache access On-package
DRAM

Data hit

Data miss

⋮

SI ⋮

SI ⋮

B W

Fig. 6: The back-end hardware is comprised of an interface and
PCSHRs. The interface is a memory-mapped device register
than can be controlled by the OS. Each PCSHR contains the
page copy status/information of a DC-missed page, and sub-
entries are used for tracing the status of sub-blocks in a page.

for data consistency, and this can be done in one shot because
aligned cache frames share the same CFN prefix (line 3).
Then, the frames are evicted in a loop (lines 4-18). The
eviction daemon skips cache frames whose address translation
information remains in TLBs by referencing the TLB directory
field of CPDs to avoid a TLB shootdown (lines 6-8). It also
checks the dirty-in-cache (DC) bit of CPDs and sends write-
back commands to the back-end hardware if necessary (lines
9-11). To replace CFNs stored in PTEs with original PFNs,
the daemon accesses PTEs via existing reverse mappings that
are indexed by PFNs [7], [33], [47] (lines 12-15). Lastly, the
victim cache frames are invalidated (line 16).

D. Back-end Hardware

The back-end hardware of NOMAD is devised based on the
design principle of traditional non-blocking hardware caches
[13], [28]. However, it differs in that the back-end is controlled
by software via an interface and performs cache fills and
writebacks using PCSHRs and page copy buffers.

1) Interface: The back-end interface is a memory-mapped
device register, which can be accessed by the OS and is
comprised of the following fields as shown in Fig. 6. A state
(S) bit indicates whether the interface is busy or idle, and the
front-end can send a command only if the interface is in an idle
state. A type (T) bit specifies a command type, which is either
a cache-fill or writeback execution. The register also contains
address information including a PFN, CFN, and offset (i.e.,
76 bits total). On receiving a command from the front-end,
the back-end allocates a PCSHR, and then the interface turns
into an idle state. If there are no free PCSHRs remaining, the
interface continues to stay in the busy mode.

2) PCSHRs and Page Copy Buffers: The back-end hard-
ware employs several PCSHRs to concurrently handle multiple
page copy commands as depicted in Fig. 6. Since a DRAM
channel has a limited burst size [21], a back-end memory
controller has to issue many DRAM read and write accesses
to copy a page (e.g., 64 accesses for the burst size of 64
bytes). We refer to a data block retrieved from a single burst
as a sub-block, and a PCSHR traces page copy status at the
sub-block granularity. A valid (V) bit in the PCSHR indicates
if it has an active command. Command type (T), PFN, and

CFN (65 bits in total) are the command information obtained
from the interface register on allocation. A priority (P) bit and
prioritized sub-block index (PI, 6 bits) are used for critical-
data-first miss handling [15]. The P bit indicates if there is
a prioritized sub-block, and the PI identifies the index of
the prioritized sub-block. On the allocation of a cache-fill
command, the P bit is set, and the PI is deduced from the
offset of the interface register. Read-issued (R), in-buffer (B),
and partial-write (W) bit vectors (64 bits per vector) are used
for tracing the status of sub-blocks. The R and W vectors
show whether read and write transfers of sub-blocks have
been issued, respectively. When a read request is sent out for
a sub-block, the corresponding bit in the R vector is set to
avoid generating redundant memory accesses. Sub-blocks of a
page are fetched sequentially by default, unless the P bit of a
PCSHR is set to prioritize a certain sub-block. The B vector
indicates which sub-block data are currently available in a page
copy buffer (see Fig. 3) while the page is in a transfer. The
W vector is used for tracing sub-block states when writing
them back to the off-package memory or filling them in the
DRAM cache depending on the command type. A PCSHR also
contains a set of sub-entries, each comprised of a valid (V)
bit and sub-block index (SI, 6 bits) along with access-specific
information such as an access ID. For every memory access
that hits in a PCSHR (i.e., data miss), the SI of a memory
address is saved in a sub-entry as a pending request, which
will be serviced when the corresponding sub-block becomes
available in the page copy buffer.

3) Handling DRAM Cache Accesses: Since NOMAD im-
plements a decoupled tag-data management scheme, the back-
end should be able to resolve data misses. For every DC access
on a TLB hit, the CFN tags of PCSHRs are compared with
the DC access address as shown in Fig. 6. No matched tags
indicate that the page is not in a transfer, and thus the whole
page data are available in the DRAM cache (i.e., data hit).
Otherwise, a matched tag implies a data miss, and the access
request is scheduled in a sub-entry of the matched PCSHR.
Pending accesses in sub-entries are handled differently based
on access types (i.e., read or write) and the status of target
sub-blocks. The data miss of a write access can immediately
write data in a page copy buffer and set the corresponding
bit in the B vector. For a read data miss, the target sub-block
may be already available in the page copy buffer or still in
a transfer from the off-package memory. In case of a page
copy buffer hit (i.e., corresponding bit set in the B vector),
the access can be immediately serviced by reading the data
from the buffer instead of accessing the on-package DRAM,
which saves latency and bandwidth. Otherwise, the pending
access must wait until the missed sub-block arrives.

E. Analysis of Effective Cache Access Latency

Fig. 7 visualizes the access latency of different DRAM
cache schemes for two cases, i) TLB and DC tag hits and
ii) TLB and DC tag misses, which are denoted as (hit, hit)
and (miss, miss), respectively. A HW-based scheme exhibits
longer access latency in the (hit, hit) case than OS-managed

198Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

Comparator latencyExtra latency

SRAM $ DC access (tag and data)

SRAM $ DC access

SRAM $ DC access

HW-based

Blocking OS-managed

NOMAD

(a) Case of TLB hit and DRAM cache hit: (hit, hit)

Page copy buffer hitCache-fill command

TLB PT walk SRAM $

TLB PT walk Page copy DC tag miss handler SRAM $ DC access

TLB PT walk DC tag miss handler SRAM $

HW-based

Blocking OS-managed

NOMAD

DC access (tag and data) Off-package DRAM access

Off-package DRAM access

(b) Case of TLB miss and DRAM cache miss: (miss, miss)

Fig. 7: Comparison of effective access latency between different DRAM cache schemes. (a) In a (hit, hit) case, OS-managed
schemes provide near-ideal access latency, whereas a HW-based design exhibits longer access latency to read a DC tag from
the on-package DRAM. (b) In a (miss, miss) case, non-blocking miss handling of HW-based scheme and NOMAD effectively
hides the latency via critical-data-first scheduling, while the blocking OS-managed scheme has a substantial latency penalty.

schemes because it has to access the on-package DRAM to
read a DC tag. Instead, it can effectively hide the miss handling
latency using MSHRs with critical-data-first scheduling [15]
for the (miss, miss) situation. On the contrary, a blocking OS-
managed scheme delivers ideal access latency in the (hit, hit)
case since it reads a DC tag during a TLB access. However,
it suffers from significantly long miss handling latency in the
(miss, miss) case due to the blocking mechanism.

In contrast, the OS-managed DC design of NOMAD pro-
vides near-ideal DC access time in the (hit, hit) case, and
its non-blocking miss handling mechanism via decoupled tag-
data management substantially subdues the latency overhead
of the blocking OS-managed scheme in the (miss, miss) case
as well. The decoupled tag-data management in fact makes a
synergistic effect to hide the miss handling latency. A memory
request that had caused a DC tag miss is very likely to hit in
a page copy buffer even though an application thread resumes
immediately after the NOMAD front-end resolves only the
DC tag miss. Since the cache fill is offloaded to the back-end
hardware in advance by the DC tag miss handler as shown
in Fig. 7b, critical-data-first scheduling in the back-end can
promptly fetch the data. In our experiments, we observe that
91.6% data misses hit in page copy buffers.

The following describes other cases that are not illustrated in
Fig. 7. In a (miss, hit) situation, a TLB miss penalty including
a page table walk is added to the access latency of the (hit,
hit) case for all DC schemes, which is unavoidable. For a (hit,
miss) case, the DC access path of the HW-based scheme along
the SRAM cache hierarchy is not affected. Thus, its effective
access latency is the same as the (miss, miss) case without
the TLB miss penalty. When it comes to OS-managed DRAM
caches including both blocking and non-blocking schemes, the
(hit, miss) case is equivalent to accessing a non-cacheable
page, which behaves like a conventional memory system
without the on-package DRAM.

F. Centralized vs. Distributed Back-end Designs
Contemporary processors utilize multiple memory channels,

where a memory controller is assigned to each channel (or

LLC

HBM

DDR DDR

System Bus

BE

HBM

(a) Centralized back-end

LLC

HBM

DDR DDR

System Bus

BE

HBM

BE

(b) Distributed back-ends

Fig. 8: Centralized and distributed back-end (BE) structures
that keep the generality of HBMs (on-package DRAM) and
DDRs (off-package memory).

two) [5], [42]. In such a multi-channel design, a centralized
back-end such as Fig. 8a can raise routing and bandwidth con-
cerns since it must handle all the DC traffic. Instead, NOMAD
can implement distributed back-ends as shown in Fig. 8b,
where DC accesses head for different memory channels based
on CFNs. Tuck et al. [44] observed that a distributed miss
handling architecture is vulnerable to access imbalance, which
causes frequent lockups and thus requires more resources.
However, NOMAD with distributed back-ends does not have
this problem because page copy commands are uniformly
distributed to the back-ends of different on-package DRAM
channels due to the FIFO allocation policy.

G. Support for Shared Pages and Superpages

NOMAD is distinguished from prior OS-managed schemes
in that it supports caching shared pages [22], [29]. When
updating a PTE on a cache frame allocation, the DC tag miss
handler can check if the page is shared by referencing its
PPD, which can be accessed by using the PFN as an index of
the PPD array. If the page is shared with multiple PTEs, the
handler can retrieve them via reverse mappings and update
them all [7], [33], [47]; this is omitted in Algorithm 1 for
simplicity. Evicting the cache frame of a shared page can also
be performed in a similar way, and it incurs no additional
overhead because the eviction daemon has to read its PPD
and reverse mapping anyway (lines 12-15 in Algorithm 2).

Recent operating systems utilize superpages that are a few
megabytes or even gigabytes in size to extend the TLB

199Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

TABLE II: System and DRAM Configurations

System parameters

Processor 8 out-of-order cores,
4GHz, 192 ROB entries, 8 issue width

L1 TLB 128 entries, 8-way
L2 TLB 1536 entries, 6-way

L1 I/D cache 32KB, 2-way, 2 cycles, private
L2 cache 128KB, 4-way, 4 cycles, private
L3 cache 8MB, 8-way, 17 cycles, shared

DRAM cache 1GB, shared

On-package DRAM [45]

HBM2, 2GHz, 128-bit, 64-byte burst size,
16 banks/rank, 1 rank/channel, 8 channels,
4KB row page, RoBaRaChCo, open page,

tRCD-tCAS-tRP-tRAS 7-7-7-17 (ns)

Off-package memory [35]

DDR4-3200, 64-bit, 64-byte burst size,
16 banks/rank, 2 rank/channel, 2 channels,
4KB row page, RoBaRaChCo, open page,
tRCD-tCAS-tRP-tRAS 14-14-14-34 (ns)

Tags-in-DRAM [24]

Organization

1KB cache line, 4-way, LRU,
perfect way prediction on hit,
write-no-allocate, 32 MSHRs,

4 sub-entries/MSHR, 32 write buffers,
64-byte-granular dirty tracking

NOMAD (this work)
Front-end 400-cycle tag management latency

Back-end 16 PCSHRs, 4 sub-entries/PSCHR,
no write buffer

reach. Prior work on DRAM caches showed that there could
be significant performance degradation due to over-fetching
issues even with a few kilobytes of cache line sizes [22],
[24], [25]. However, restricting a supportable page size only
to 4KB may become a problem for some workloads whose
working sets are allocated with superpages [17]. To resolve the
problem, NOMAD can utilize a fragmented memory allocation
technique to support superpages [38], which only brings 4KB-
granular sub-pages on demand while preserving the benefits of
superpage allocations. Since this technique itself is orthogonal
to the key of this paper, we do not dive deep into supporting
superpages in a DRAM cache in this paper.

IV. EVALUATION

A. Experiment Environment

We modeled NOMAD based on the gem5 simulator [4],
[32], and a chip multiprocessor (CMP) system is configured
with private L1, L2 caches and a shared L3 cache. We used
CACTI-7.0 [36] to determine the access time of SRAM caches,
and detailed system parameters are summarized in Table II.
For memory modeling, we implemented a DRAM cache con-
troller in gem5 and integrated DRAMsim3 [30] to configure a
heterogeneous memory system that consists of HBM [23] and
DDR4 [35]. We selected nine memory-intensive benchmarks
from SPEC2006 [16] and six graph processing benchmarks
from GAPBS [3]. As described in Section II-C, the bench-
marks are categorized into four different classes (i.e., Excess,
Tight, Loose, and Few) based on their RMHB characteristics.
Table I summarizes the workloads used in our experiments.
We assigned a single-threaded program to each CPU and fast-
forwarded the applications via an atomic CPU model to reach

the region of interest (ROI) of the workloads and also to
warm up DRAM caches. On reaching the ROI, the timing
simulation of out-of-order cores initiated and ran for 500
million instructions per core (i.e., total 4 billion instructions).

To analyze OS-managed DRAM caches, we implemented
multi-level TLBs and modified the OS emulation functionali-
ties of SE-mode gem5 including address translation, memory
management, etc. Shared resources used for the cache frame
management (e.g., CPDs, head and tail of the free queue) are
frequently accessed, so we assumed that they are kept in the
on-package DRAM, which take up several pages. Caching the
shared resources requires total 2MB, assuming that each CPD
is 8 bytes with alignment although the actual size 42 bits.

We conservatively modeled the latency overhead of OS rou-
tines in NOMAD. The critical path of a DC tag miss handler
is primarily attributed to two sequential read accesses to the
on-package DRAM, one for probing the head of the free cache
frame queue and another for reading its CPD. Other accesses
such as updating a PTE and CPD or reading a PPD can be
overlapped, so their latency impacts can be effectively hidden.
Considering the average on-package DRAM access time of
OS-managed schemes (i.e., 93 cycles), we have conservatively
set the tag management latency to 400 cycles including a
synchronization overhead. In our experiments, we observed
between 400 and 3200 cycles of DC tag management delays in
NOMAD because the miss handling routine is treated as a crit-
ical section that allows only one CPU to enter at a time. CPUs
executing OS routines are stalled during timing simulations as
if the OS occupies the CPUs. In contrast, the TDC scheme is
allowed to perform multiple page copy executions in parallel
by locking only the critical PTEs without an extra penalty.
NOMAD is compared with four other memory schemes, and
the following highlights the key of each implementation.
• Baseline: It models a traditional system only with the off-
package memory. This design serves as the lower bound of
the DRAM cache performance.
• TiD: This HW-based scheme adopts the tag management
method of Unison Cache [24]. The cache line size of TiD
is set to 1KB by idealizing a DRAM row architecture, and
the DRAM cache is configured as a four-way set-associative
structure with an ideal way predictor.
• TDC: It represents the state-of-the-art OS-managed DC de-
sign [29]. We implemented this scheme similar to the NOMAD
front-end except for the blocking miss handling mechanism
in order to disregard the effects of other efficiencies in the
TDC scheme (e.g., lacking dirty-in-cache bits for efficient data
management).
• Ideal: The ideal OS-managed DRAM cache has no latency
penalties for tag miss handling, page copy, etc. It serves as the
upper bound of the OS-managed DRAM cache performance.

B. Evaluation Results

Fig. 9, 10, and 11 show evaluation results in a nutshell.
Fig. 9 plots the IPC of various memory schemes relative to
the baseline. It also shows the average DC access time in CPU
cycles, which is measured at DC controllers. Fig. 10 displays

200Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

0

70

140

210

280

350

0

0.5

1

1.5

2

2.5

A
vg

. D
C

 a
cc

es
s
�

m
e

(c
yc

le
s)

N
o

rm
al

iz
ed

 IP
C

TDC NOMAD IdealTiDBaseline

cact sssp bwav les libq gems bfs cc lbm mcf bc ast pr sop tc gmean

Avg. DRAM cache access �me

Excess Tight Loose Few

Fig. 9: IPC normalized to the baseline and average DRAM cache access time in CPU cycles.

0
20
40
60
80
100

0
20
40
60
80

100

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

Ti
D

TD
C

N
O

M
A

D
Id

ea
l

cact sssp bwav les libq gems bfs cc lbm mcf bc ast pr sop tc gmean

R
o

w
 b

u
ff

er
 h

it
 r

at
e

(%
)

B
an

d
w

id
th

 u
sa

ge
 (

G
B

/s
) Data access Cache-fill Write-back Metadata access Row buffer hit rate of on-package DRAM

Excess Loose FewTight

Fig. 10: Breakdown of on-package DRAM bandwidth usage and row buffer hit rates of the on-package DRAM.

400

550

700

850

1000

1150

0

10

20

30

40

50

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

TD
C

N
O

M
A

D

cact sssp bwav les libq gems bfs cc lbm mcf bc ast pr sop tc gmean

A
vg

. t
ag

 m
an

ag
em

en
t

la
te

n
cy

 (
cy

cl
es

)

R
a�

o
 o

f
ap

p
. s

ta
ll

cy
cl

es
 (

%
) Tag management Data management Avg. tag manament latency of TDC Avg. tag manament latency of NOMAD

Excess Tight Loose Few

Fig. 11: Breakdown of application stall cycle ratios and the average tag management latency of OS-managed schemes.

the breakdown of the on-package DRAM bandwidth usage and
the row buffer hit rates. Lastly, Fig. 11 compares application
stall cycle ratios and the tag management latency of two OS-
managed schemes, TDC and NOMAD.

1) Class Excess: Workloads in the Excess class have
high RMHB and LLC MPMS. TDC struggles with these
benchmarks in that the workloads are stalled around 43%
of the runtime (Fig. 11). As a result, TDC shows almost no
performance gains over the baseline although it has ideal DC
access time (Fig. 9). On the other hand, TiD consumes a
substantial portion of the on-package DRAM bandwidth for
accessing DC metadata and miss handling (i.e., cache fills and
writebacks) (Fig. 10), resulting in longer average DC access
time (Fig. 9). In contrast, NOMAD achieves considerable
performance speedup over the baseline by i) significantly re-
ducing application stall cycles via non-blocking miss handling
compared to TDC (Fig. 11) and ii) providing near-ideal DC
access time (Fig. 9). Even for sssp that has low spatial locality,
NOMAD achieves a similar performance enhancement as TiD
(Fig. 9) although it uses greater miss handling bandwidth than
TiD because of the larger cache line size (Fig. 10).

2) Class Tight: For les, libq, and gems in the Tight class
with abundant spatial locality (i.e., high row buffer hit rates in
Fig. 10), TDC shows better performance than TiD thanks to
the ideal DC access time (Fig. 9) even though it has large

application stall ratios around 29% (Fig. 10). TDC is also
resilient to bursty LLC miss traffic such as les compared to TiD
since the HW-based scheme amplifies the use of on-package
DRAM bandwidth for accessing DC metadata, which leads to
increases in the average DC access time (Fig. 9). However, for
the workload with less spatial locality (i.e., bfs), TDC achieves
almost no performance improvements over the baseline, while
TiD does. This is because bfs has spatial locality far less than
the 4KB page size but close to the 1KB cache line size of
the HW-based scheme. For all workloads in the Tight class,
NOMAD shows the greatest performance enhancements even
for bfs since it can tolerate DC tag misses and has near-ideal
DC access time.

3) Class Loose: For workloads in the Loose class, TDC
achieves greater performance improvements than TiD (Fig. 9)
since application stall ratios around 15% are at the affordable
level (Fig. 11). As an exception, TiD shows better perfor-
mance than TDC for cc whose LLC MPMS is low, because
TiD does not require much on-package DRAM bandwidth
to access DC metadata. Other workloads in this class have
high LLC MPMS, so TDC performs better than TiD even
for the workload with low spatial locality (i.e., bc). NOMAD
shows less than 5% application stall ratios for the Loose-class
benchmarks not only because the workloads have few DC tag
misses but also because there are less contentions for shared

201Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

0

8

16

24

32

0

0.5

1

1.5

2

1 4 16 1 4 16 1 4 16 1 4 16 1 4 16
Excess Tight Loose Few All B

an
d

w
id

th
 u

sa
ge

 (
G

B
/s

)

N
o

rm
al

iz
ed

 IP
C

Normalized IPC Off-package bandwidth consump�on

Fig. 12: Per-class average IPC relative to the baseline and
the average off-package memory bandwidth consumption of
NOMAD with respect to the number of PCSHRs.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16 32

N
o

rm
al

iz
ed

 IP
C

Number of PCSHRs

4 cores

6 cores

8 cores

10 cores

12 cores

Fig. 13: Average IPC of Excess-class benchmarks with differ-
ent number of PCSHRs for increasing CPU core count.

resources (e.g., critical sections in front-end routines). Thus,
the average tag management latency of NOMAD approaches
the minimum 400 cycles (Fig. 11), and it achieves near-ideal
performance speedup (Fig. 9).

4) Class Few: At this level of RMHB, application stall
ratios become almost negligible (about 4%) even for TDC
(Fig. 11). Thus, TDC shows similar performance as NOMAD
and the ideal scheme (Fig. 9) except for ast, which has rela-
tively higher RMHB than other Few-class benchmarks. On the
contrary, TiD suffers from long DC access time (Fig. 9) espe-
cially for workloads with high LLC MPMS (e.g., pr) because
of significant on-package DRAM bandwidth consumption for
metadata accesses (Fig. 10). TiD performs even worse than the
baseline for tc because it consumes a substantial portion of the
on-package DRAM bandwidth for cache fills due to conflict
misses of the set-associative cache organization, whereas TDC
and NOMAD feature fully-associative caches.

5) Summary: TDC excels at processing Loose and Few-
class benchmarks by providing ideal DC access time, but its
blocking miss handling mechanism cannot efficiently deal with
workloads in the Excess class. On the other hand, TiD as
a non-blocking HW-based cache is resilient to DC misses.
However, Table I shows that workloads exhibiting high RMHB
also have large LLC MPMS, which implies that TiD is likely
to suffer from increased DC access time due to excessive on-
package DRAM bandwidth usage for DC metadata accesses.

The decoupled tag-data management of NOMAD effectively
overcomes the drawbacks of both OS-managed and HW-based
DRAM cache designs by enabling non-blocking miss handling
and achieving near-ideal DC access time. As a result, NOMAD
improves IPC by 16.7% and 25.5% over TDC and TiD, re-
spectively. Although NOMAD shows greater tag management
latency than TDC (Fig. 11) because of contentions on shared

0
500
1000
1500
2000

0
20
40
60
80

100

4 8 16 32 4 8 16 32
cact libq A

vg
. t

ag
 m

an
ag

em
en

t
la

te
nc

y
(c

yc
le

s)

A
p
p
. s

ta
ll

ra
te

 (
%

) Stall rate Avg. tag management latency

Number of PCSHRs

Fig. 14: Application stall rates and the average tag manage-
ment latency of cact (highest RMHB) and libq (bursty RMHB)
with respect to the number of PCSHRs.

resources (e.g., critical sections in front-end routines), the
penalty is subdued by efficient data management offloaded
to the back-end hardware. Consequently, NOMAD reduces
application stall cycles by 76.1% on average compared to
TDC. In addition, the latency overhead of data verification on
DC accesses is insignificant in the NOMAD back-end because
reading and comparing the CFN tags of PCSHRs account for
only 0.21 CPU cycle based on a CACTI analysis [36]. Even
if the data verification procedure takes up one full CPU cycle,
it results in only 0.1% performance decrease on average.

6) Sensitivity to the Number of PCSHRs: Fig. 12 plots per-
class average IPC normalized to the baseline and the average
off-package memory bandwidth usage with varying PCSHRs
in NOMAD. In overall, attainable miss handling bandwidth
is a performance bottleneck when NOMAD is provisioned
with a small number of PCSHRs. As the number of PCSHRs
increases, the performance escalates until the PCSHRs provide
sufficient miss handling bandwidth. For Excess-class bench-
marks that have higher RMHB than the off-package memory
bandwidth, eight PCSHRs offer near-max performance, and
further increasing the count gives no noticeable improvements
because the off-package memory bandwidth becomes the
bottleneck rather than PCSHRs. Fig. 13 shows the average IPC
of Excess-class benchmarks with increasing PCSHRs relative
to 32-PCSHR setups for different number of CPUs. Since the
performance is bounded by the off-package memory beyond
eight PCSHRs, increasing the number of CPU cores in the
CMP does not require a greater number of PCSHRs.

Fig. 14 compares application stall rates and the average tag
management latency between cact (highest RMHB) and libq
(bursty RMHB) with respect to the number of PCSHRs. The
graph reveals that the bursty-RMHB benchmark (i.e., libq)
experiences more severe contentions on PCSHRs than the
highest-RMHB benchmark (i.e., cact). In this case, increas-
ing PCSHRs from 16 to 32 helps reduce the average tag
management latency by 48% and improves performance by
11.3%. However, other than two bursty-RMHB benchmarks
(i.e., libq, gems), we observe that four PCSHRs provide Tight-
class benchmarks with sufficient miss handling bandwidth. For
Loose and Few-class workloads, NOMAD even with only one
or two PCSHR(s) has enough missing handling bandwidth.

7) Area-optimized Design: The area overhead of NOMAD
back-end hardware is mostly attributed to page copy buffers,
which in total account for 4KB page size × the number of

202Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

0

500

1000

1500

2000

0
0.2
0.4
0.6
0.8

1
1.2

(8, 8) (16, 8) (32, 8) (32, 32)

A
vg

. l
at

en
cy

(c
yc

le
s)

N
o

rm
al

iz
ed

 IP
C

Normalized IPC Average tag management latency

(n, m) = (n PCSHRs,, m page copy buffers)

Fig. 15: Normalized IPC and the tag management latency
of burst-RMHB workloads (i.e., libq, gems) with different
configurations of (n PCSHRs, m page copy buffers).

0

200

400

600

800

0

0.5

1

1.5

2

Cent. Dist. Cent. Dist. Cent. Dist.
8 16 24

A
vg

. l
at

en
cy

 (
 c

yc
le

s)

N
o

rm
al

iz
ed

 IP
C

Total number of PCSHRs

Normalized IPC Avg. tag management latency

Fig. 16: Average IPC normalized to the baseline and the
average tag management latency of centralized and distributed
back-end designs with different numbers of PCSHRs.

PCSHRs. Other fields are only 45 bytes in size per PCSHR
(i.e., 37 bytes of control bits and four sets of 2-byte sub-
entries). Instead, the back-end hardware can be designed to
have a smaller number of page copy buffers to reduce the area
overhead but a larger number of PCSHRs to alleviate resource
contentions on them particularly for bursty-RMHB workloads.
In this design, the back-end has to explicitly allocate free page
copy buffers to PCSHRs. Fig. 15 plots the average IPC and
the tag management latency of two bursty-RMHB benchmarks
(i.e., libq, gems) with different numbers of PCSHRs and page
copy buffers, where (n, m) denotes n PCSHRs and m buffers.
The graph shows that increasing the PCSHR count helps the
bursty-RMHB workloads, but the number of page copy buffers
does not have to scale up proportionally.

8) Centralized vs. Distributed Back-ends: Similar to multi-
ported cache designs [43], NOMAD can implement distributed
back-ends to support a multi-channel system. This requires
only a minor modification to the OS to distribute page copy
commands based on a few bits of CFNs. Tuck et al. [44]
observed that a distributed miss handling architecture could
suffer from frequent lockups due to imbalanced accesses and
thus would require greater hardware resources. However, this
is not the case for NOMAD because page copy commands
are uniformly distributed to DC channels thanks to sequential
cache frame allocations in a FIFO manner. Fig. 16 compares
the average IPC and tag management latency between cen-
tralized and distributed back-ends with different numbers of
PCSHRs. The graph shows that the centralized and distributed
back-ends achieve similar performance. Thus, NOMAD can be
implemented in both ways with comparable hardware costs.

V. RELATED WORK

1) Scalable Designs: Prior studies [31], [39] proposed
scalable TiD designs by using small cache lines (i.e., 64
bytes) and storing tags and data in the same DRAM row
to optimize the tag serialization latency. To mitigate the
bandwidth problems of TiD schemes, other related work [10],
[18] suggested using SRAM caches to filter metadata accesses.
If on-package DRAM supports an error correction code (ECC),
direct-mapped DRAM caches may save the bandwidth con-
sumption by storing tags in spare ECCs and accessing them
along with the ECC metadata [42], [48].

2) Exploiting Spatial Locality: DRAM caches with small
cache lines cannot exploit abundant spatial locality of memory-
bound applications, so prior work proposed DC designs with
large cache lines [24]–[26], [40]. To mitigate the waste of
bandwidth consumption caused by large cache lines, they used
selective caching mechanisms at the page or block levels.

3) Flexible and Low-cost Designs: Using large cache lines
in TiD schemes imposes several implementation challenges. It
incurs non-trivial design and verification efforts because cache
functions (e.g., tag matching, allocation) have to be tightly
coupled with conventional memory controller tasks (e.g., row
activation, refresh). Also, set-associative cache organizations
and selective caching mechanisms are not flexibly adaptable
to different characteristics of workloads [34], [41]. Thus, OS-
managed DC solutions have been proposed to overcome these
limitations [2], [12], [17], [27], [29], [34], [37], [41].

4) Hybrid Approaches: The performance of an OS-
managed DRAM cache is bounded by page migration band-
width such that TDC struggles with Excess-class workloads.
To blend HW-based and OS-managed solutions, related work
[49] proposed a hybrid method. However, it is basically a HW-
managed design with passive OS supports, which is inflexible
and aggravates the hardware design complexity. In contrast,
NOMAD is an OS-managed DRAM cache that can flexibly
utilize various selective caching mechanisms [12], [27], [41].
It also mitigates the limitations of prior OS-only solutions by
introducing a low-cost hardware support in the back-end.

5) Multi-socket Support: On-package DRAMs in a multi-
socket system can be configured as partitioned or coherent
caches. In a partitioned scheme, a physical frame can only
be cached in a local on-package DRAM. NOMAD can be
easily extended to support this organization by binding local
memory nodes to the OS and applying a NUMA allocation
algorithm. In a coherent-cache scheme, DRAM caches require
a coherence protocol [11], [20] because a physical frame can
be duplicately cached in any on-package DRAMs. Although
NOMAD is an OS-managed DRAM cache, existing DC coher-
ence protocols are compatibly applicable since the front-end
sends all the mapping information to the hardware.

VI. CONCLUSION

The proposed NOMAD scheme enables a non-blocking OS-
managed DRAM cache via tag-data decoupling. It overcomes
the disadvantages of prior OS-managed and HW-based designs

203Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

by providing near-ideal DC access time and enabling non-
blocking miss handling via a low-cost hardware support.
NOMAD implements a flexible hybrid DRAM cache design
without excessive hardware design complexity and resource
overhead unlike previous hybrid DRAM caches.

VII. ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion (NRF) of Korea under Grant #2021R1A2C1095162 and
the Ministry of Science and ICT of Korea through the ITRC-
supported program supervised by the Institute of Information
and Communications Technology Planning and Evaluation
under Grant #IITP-2020-0-01847.

REFERENCES

[1] Advanced Micro Devices, “AMD64 Architecture Programmer’s
Manual Volumne 2: System Programming,” Publication
No. 24593, pp. 1–660, Nov. 2020, [Online], Available:
https://www.amd.com/system/files/TechDocs/24593.pdf.

[2] N. Agarwal and T. F. Wenisch, “Thermostat: Application-Transparent
Page Management for Two-Tiered Main Memory,” International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Apr. 2017, p. 631–644.

[3] S. Beamer, K. Asanović, and D. Patterson, “The GAP
Benchmark Suite,” pp. 1–16, Aug. 2015, [Online], Available:
https://arxiv.org/abs/1508.03619.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
Simulator,” ACM SIGARCH Computer Architecture News, May 2011,
pp. 1–7.

[5] A. Biswas, “Sapphire Rapids,” IEEE Hot Chips Symposium, Aug. 2021,
pp. 1–22.

[6] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill, “Translation
Lookaside Buffer Consistency: A Software Approach,” International
Conference on Architectural Support for Programming Languages and
Operating Systems, Apr. 1989, p. 113–122.

[7] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: From I/O
Ports to Process Management, 3rd ed. O’Reilly Media, 2005, pp. 1–
1229.

[8] J. Choquette, O. Giroux, and D. Foley, “Volta: Performance and Pro-
grammability,” IEEE Micro, vol. 38, no. 2, pp. 42–52, Apr. 2018.

[9] J. Choquette, E. Lee, R. Krashinsky, V. Balan, and B. Khailany, “3.2 The
A100 Datacenter GPU and Ampere Architecture,” IEEE International
Solid-State Circuits Conference, Feb. 2021, pp. 48–50.

[10] C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: Techniques for
Mitigating Bandwidth Bloat in Gigascale DRAM Caches,” ACM/IEEE
International Symposium on Computer Architecture, June 2015, pp. 198–
210.

[11] C. Chou, A. Jaleel, and M. K. Qureshi, “CANDY: Enabling coherent
DRAM caches for multi-node systems,” IEEE/ACM International Sym-
posium on Microarchitecture, Oct. 2016, pp. 1–13.

[12] T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi, and
A. Gavrilovska, “Kleio: a Hybrid Memory Page Scheduler with Machine
Intelligence,” ACM International Symposium on High-Performance Par-
allel and Distributed Computing, June 2019, pp. 37–48.

[13] K. I. Farkas and N. P. Jouppi, “Complexity/Performance Tradeoffs
with Non-Blocking Loads,” ACM/IEEE International Symposium on
Computer Architecture, June 1994, pp. 212–222.

[14] D. Foley and J. Danskin, “Ultra-Performance Pascal GPU and NVLink
Interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, Mar.-Apr. 2017.

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture: a Quanti-
tative Approach, 6th ed. Elsevier, 2017, pp. 1–936.

[16] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM
SIGARCH Computer Architecture News, Sep. 2006, pp. 1–17.

[17] T. Heo, Y. Wang, W. Cui, J. Huh, and L. Zhang, “Adaptive Page
Migration Policy With Huge Pages in Tiered Memory Systems,” IEEE
Transactions on Computers, vol. 71, no. 1, pp. 53–68, Jan. 2022.

[18] C. Huang and V. Nagarajan, “ATCache: Reducing DRAM Cache Latency
via a Small SRAM Tag Cache,” International Conference on Parallel
Architectures and Compilation Techniques, Aug. 2014, pp. 51–60.

[19] C. Huang, V. Nagarajan, and A. Joshi, “DCA: a DRAM-cache-aware
DRAM contoller,” ACM International Conference on Supercomputing,
Nov. 2016, pp. 887–897.

[20] C.-C. Huang, R. Kumar, M. Elver, B. Grot, and V. Nagarajan, “C3d:
Mitigating the numa bottleneck via coherent dram caches,” IEEE/ACM
International Symposium on Microarchitecture, Oct. 2016, pp. 1–12.

[21] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems: Cache, DRAM,
Disk, 1st ed. Morgan Kaufmann Publication, 2007, pp. 1–900.

[22] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W.
Lee, “Efficient Footprint Caching for Tagless DRAM Caches,” IEEE
International Symposium on High Performance Computer Architecture,
Mar. 2016, pp. 234–248.

[23] JEDEC, “High Bandwidth Memory (HBM) DRAM,” JESD235,
Mar. 2013, [Online], Available: https://www.jedec.org/standards-
documents/docs/jesd235a.

[24] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison Cache: A
Scalable and Effective Die-Stacked DRAM Cache,” IEEE/ACM Inter-
national Symposium on Microarchitecture, Dec. 2014, pp. 25–37.

[25] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM Caches for
Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache,” ACM/IEEE International Symposium on Computer Architecture,
Jun. 2013, pp. 404–415.

[26] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,
Y. Solihin, and R. Balasubramonian, “CHOP: Adaptive Filter-Based
DRAM Caching for CMP Server Platforms,” IEEE International Sympo-
sium on High Performance Computer Architecture, Jan. 2010, pp. 1–12.

[27] S. Kannan, Y. Ren, and A. Bhattacharjee, “KLOCs: Kernel-Level Object
Contexts for Heterogeneous Memory Systems,” ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Apr. 2021, pp. 65–78.

[28] D. Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache Organization,”
ACM/IEEE International Symposium on Computer Architecture, May
1981, pp. 81–87.

[29] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee,
“A Fully Associative, Tagless DRAM Cache,” ACM/IEEE International
Symposium on Computer Architecture, Jun. 2015, pp. 211–222.

[30] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A
Cycle-Accurate, Thermal-Capable DRAM Simulator,” IEEE Computer
Architecture Letters, Feb. 2020, pp. 106–109.

[31] G. H. Loh and M. D. Hill, “Efficiently Enabling Conventional Block
Sizes for Very Large Die-stacked DRAM Caches,” IEEE/ACM Interna-
tional Symposium on Microarchitecture, Dec. 2011, p. 454–464.

[32] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Ko-
dama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto,
T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. Ol-
son, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani,
A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair, T. Ta, R. Thakur,
G. Travaglini, M. Upton, N. Vaish, I. Vougioukas, W. Wang, Z. Wang,
N. Wehn, C. Weis, D. A. Wood, H. Yoon, and E. F. Zulian, “The gem5
Simulator: Version 20.0+,” pp. 1–21, July 2020, [Online], Available:
https://arxiv.org/abs/2007.03152.

[33] D. McCracken, “Object-based Reverse Mapping,” Ottawa Linux Sym-
posium, July 2004, pp. 357–360.

[34] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G. H. Loh, “Heterogeneous Memory Architectures: A HW/SW
Approach for Mixing Die-stacked and Off-package Memories,” IEEE
International Symposium on High Performance Computer Architecture,
Feb. 2015, pp. 126–136.

[35] Micron, “DDR4 SDRAM datasheet MT40A1G16KD-062E,” pp.
1–372, 2018. [Online]. Available: https://media-www.micron.com/-
/media/client/global/documents/products/data-sheet/dram/ddr4/16gb
ddr4 sdram.pdf?rev=bbe79ab4b3f547e08817f6ede1850c50

[36] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A Tool to Model Large Caches,” HP Labo-

204Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

ratories, HPL-2009-85, pp. 1–20, 2009, [Online], Available:
https://www.hpl.hp.com/techreports/2009/HPL-2009-85.html.

[37] M. Oskin and G. H. Loh, “A Software-Managed Approach to Die-
Stacked DRAM,” International Conference on Parallel Architecture and
Compilation, Oct. 2015, pp. 188–200.

[38] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer, and J. Huh,
“Perforated page: Supporting fragmented memory allocation for large
pages,” ACM/IEEE International Symposium on Computer Architecture,
May 2020, pp. 913–925.

[39] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-off in Ar-
chitecting DRAM Caches: Outperforming Impractical SRAM-Tags with
a Simple and Practical Design,” IEEE/ACM International Symposium on
Microarchitecture, Dec. 2012, pp. 235–246.

[40] L. E. Ramos, E. Gorbatov, and R. bianchini, “Page Placement in Hybrid
Memory Systems,” ACM International Conference on Supercomputing,
May 2011, pp. 85–95.

[41] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel: Efficient
Tensor Migration and Allocation on Heterogeneous Memory Systems for
Deep Learning,” IEEE International Symposium on High Performance
Computer Architecture, Mar. 2021, pp. 598–611.

[42] A. Sodani, “Knights Landing (KNL): 2nd Generation Intel(R) Xeon
Phi(TM) Processor,” IEEE Hot Chips Symposium, 2015, pp. 1–24.

[43] G. Sohi and M. Franklin, “High-Bandwidth Data Memory Systems
for Superscalar Processors,” ACM/IEEE International Symposium on
Computer Architecture, May 1991, pp. 53–62.

[44] J. Tuck, L. Ceze, and J. Torrellas, “Scalable Cache Miss Handling for
High Memory-Level Parallelism,” IEEE/ACM International Symposium
on Microarchitecture, Dec. 2006, pp. 409–422.

[45] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Hybrid2:
Combining Caching and Migration in Hybrid Memory Systems,” IEEE
International Symposium on High Performance Computer Architecture,
Feb. 2020, pp. 649–662.

[46] XILINX, “Virtex UltraScale+ HBM FPGA: A Revolutionary Increase in
Memory Performance,” XILINX White Paper, WP485 v1.1, pp. 1–11,
Jul. 2019.

[47] P. Yosifovich, A. Ionescu, M. E. Russinovich, and D. A. Solomon,
Windows Internals, Part 1: System architecture, processes, threads,
memory management, and more, 7th ed. Microsoft, 2017.

[48] V. Young, Z. A. Chishti, and M. K. Qureshi, “TicToc: Enabling
Bandwidth-Efficient DRAM Caching for Both Hits and Misses in Hybrid
Memory Systems,” IEEE International Conference on Computer Design,
Oct. 2019, pp. 341–349.

[49] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-Efficient DRAM Caching via Software/Hardware Coopera-
tion,” IEEE/ACM International Symposium on Microarchitecture, Oct.
2017, pp. 1–14.

[50] L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring DRAM Cache
Architecture for CMP Server Platforms,” IEEE International Conference
on Computer Design, Oct. 2007, pp. 55–62.

205Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:23 UTC from IEEE Xplore. Restrictions apply.

