
3D-Stacked Memory Architectures for Multi-Core Processors

Gabriel H. Loh
Georgia Institute of Technology

College of Computing
loh@cc.gatech.edu

Abstract
Three-dimensional integration enables stacking memory di-
rectly on top of a microprocessor, thereby significantly re-
ducing wire delay between the two. Previous studies have
examined the performance benefits of such an approach,
but all of these works only consider commodity 2D DRAM
organizations. In this work, we explore more aggressive
3D DRAM organizations that make better use of the ad-
ditional die-to-die bandwidth provided by 3D stacking, as
well as the additional transistor count. Our simulation re-
sults show that with a few simple changes to the 3D-DRAM
organization, we can achieve a 1.75× speedup over pre-
viously proposed 3D-DRAM approaches on our memory-
intensive multi-programmed workloads on a quad-core pro-
cessor. The significant increase in memory system perfor-
mance makes the L2 miss handling architecture (MHA) a
new bottleneck, which we address by combining a novel data
structure called the Vector Bloom Filter with dynamicMSHR
capacity tuning. Our scalable L2 MHA yields an additional
17.8% performance improvement over our 3D-stacked mem-
ory architecture.

1. Introduction
It is well known that DRAM access latencies have not de-
creased at the same rate as microprocessor cycle times. This
leads to the situation where the relative memory access time
(in CPU cycles) keeps increasing from one generation to the
next. This problem is popularly referred to as the Mem-
ory Wall [41]. Three-dimensional (3D) die-stacking has re-
ceived a great deal of recent attention in the computer archi-
tecture community [5, 20, 26, 27, 29, 32]. 3D stacking en-
ables the construction of circuits using multiple layers of
active silicon bonded with low-latency, high-bandwidth and
very dense vertical interconnects [8, 14]. 3D stacking also
enables mixing dissimilar process technologies such as high-
speed CMOS with high-density DRAM. Stacking DRAM
directly on top of a processor is a natural way to attack the
Memory Wall problem.
A few prior studies have already started to investigate the

potential of 3D-stacked memory. Liu et al. and Loi et al. in-
dependently researched the performance impact of placing
a system’s main memory on top of the processor using 3D
fabrication technologies [24, 26]. While these studies re-
port impressive performance speedups for 3D-stacked mem-
ories (92% performance gain for Liu et al.’s work, and 65%
for Loi et al.’s), we will show that their results are really

only a starting point. In particular, these studies have only
considered commodity DRAMs with traditional main mem-
ory architectures. In this paper, we investigate the perfor-
mance benefit of 3D-stacked architectures that employ more
aggressive, highly-parallel memory organizations not con-
strained by traditional memory topologies.
We detail our proposed 3D memory architecture in the

remainder of this paper as follows. Section 2 reviews back-
ground material on 3D integration, DRAM, and 3D-stacked
DRAMs. Section 3 replicates and validates the performance
benefits of previously proposed 3DDRAM architectures and
presents results for “true” 3D DRAMs (i.e., what if you
split the actual DRAM bitcell arrays, wordlines and bit-
lines across multiple layers in 3D?). Section 4 presents our
new 3D-DRAM organizations that better exploit the pos-
sibilities enabled by 3D technologies. While the proposed
3D-DRAM architectures provide a significant performance
boost, we discover that the L2 MSHR architecture also re-
quires scaling. Section 5 details a novel MSHR organization
based on a new data structure called the Vector Bloom Filter
which we also combine with dynamic MSHR resizing, and
Section 6 draws some final conclusions.

2. Background
This section provides a brief overview of DRAM technol-
ogy and 3D integration. This section also reviews previous
work on 3D-stacked DRAMs and then details our simulation
methodology.

2.1. DRAM Architectures

A DRAM is simply an array of single-transistor bitcells
with some accompanying logic to access those bits. There
are, however, many ways to organize those bits and logic
blocks. Figure 1(a) illustrates a generic memory system or-
ganization. Starting with the L2 cache, a miss here requires
an access to main memory to satisfy the memory request.
A miss status handling register (MSHR) must be allocated
which stores bookkeeping information regarding the missed
request [22]. The L2 control logic forwards the request to
the memory controller (MC) which is responsible for inter-
facing with the actual DRAM chips. The request may be
buffered in a Memory Request Queue (MRQ), and the actual
order of requests sent to main memory will be determined
by an arbiter or scheduler. The MC forwards the physical
address to be read or written as well as manages the tim-
ing of other signals corresponding to the different phases of

International Symposium on Computer Architecture

1063-6897/08 $25.00 © 2008 IEEE
DOI 10.1109/ISCA.2008.15

453

International Symposium on Computer Architecture

1063-6897/08 $25.00 © 2008 IEEE
DOI 10.1109/ISCA.2008.15

453

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

Memory
Controller (MC)

MRQ Arb.
MSHRs

L2
Cache

DRAM Modules

One Bank

One Rank

Bank 1
Bank 2

Bank 0

Bank n−1

Data Bus

Addr Bus

(Typically one
rank per module)

(a) (c)

R
o

w
 D

ec
o

d
er

Sense Amps

Row Buffer

Column Select

Bitcells

(b)

Figure 1. (a) Organization of the memory hierarchy starting from the L2 cache. (b) Details of one memory rank. (c) Details of
one memory bank.

the memory access protocol. Different MC implementations
may have different levels of complexity; some may use sim-
ple first-in-first-out (FIFO) processing of memory requests
while others may reorder requests to improve access local-
ity [18, 34].
At the highest level, the DRAM arrays are divided into

ranks, typically with one or two ranks per DRAM module,
as shown in Figure 1(b). Within each rank, the memory is
subdivided into banks. Each bank consists of a 2D array
of bitcells (c). On a DRAM read, bits from the physical
address select the rank, bank and row; a set of sense am-
plifiers read the contents of that row and then latch the re-
sults in a row buffer. Any subsequent accesses to the same
row can bypass the array-read and access the data directly
from the row buffer. A few remaining bits from the physi-
cal address select the column to be read. The data are sent
back to the MC, which then sends the data to the proces-
sor. It is also important to note that reading the contents
of a DRAM row destroys those contents. After any read,
the row must eventually be written back to the bitcell array.
Furthermore, the contents of the bitcells slowly leak or de-
cay, and so they must be periodically read and written back
(“refreshed”). The timing and interfaces of different DRAM
standards (e.g., SDRAM, DDR, Rambus, etc.) vary, but the
high level organization is similar across families. For more
information on the organization of modern DRAM architec-
tures, we refer the reader to the overview provided in Cuppa
et al.’s study of DRAM performance [7].
In general, increasing the number of ranks or banks in-

creases the amount of parallelism that the memory system
can support in terms of the number of simultaneously open
pages/rows. Increasing the number of row buffer entries
per bank (sometimes called a row buffer cache or a DRAM
cache [17]) also helps improve performance by increasing
the frequency of lower-latency row-buffer hits. Increasing
the width or clock speed of buses increases the bandwidth
for transferring data between components. In typical sys-
tems, such as that illustrated in Figure 1, these parameters
usually take on relatively small values. Having too many
ranks is undesirable because it increases the total number of
DRAM modules (chip count), the number of memory sock-

ets, and the length and loading of the memory bus. The num-
ber of banks is limited by the area required to implement the
additional sets of row decoders, sense amplifiers, column
muxes, and row buffers. Increasing the bus widths between
the MC and the DRAM modules is primarily limited by the
pin counts on both ends, as well as the area requirements on
the motherboard for the printed circuit board (PCB) traces.
Similarly, the width of the front-side bus (FSB) between the
processor and an off-chip MC cannot be easily increased due
to the pin limitations of the processor and MC packages. In-
creasing clocks speeds of off-chip buses is also very diffi-
cult due to the long, heavily capacitative PCB traces. On-
chip memory controllers, however, could implement wider
and/or faster interfaces between the processor and the MC,
but this does not address the connection between the MC
and main memory.

2.2. 3D Integration

There are many candidate technologies for 3D die stacking,
but wafer-to-wafer bonding appears to be the leading con-
tender in industry [5, 13, 30]. Many recent academic studies
have assumed this type of 3D stacking technology [20, 26,
27, 29, 32]. Figure 2 shows a 3D stack. Each layer consists
of a die manufactured in a typical 2D technology. The in-
dividual layers each consist of bulk silicon, active devices,
and multiple layers of metal routing. After fabrication, each
wafer is thinned to only 10-100μm in thickness [5, 8], and
then Through Silicon Vias (TSVs) are etched through the
bulk silicon. Thermocompression is then used to bond the
individual layers together to form the 3D stack [25].
For the computer architect, the main 3D attributes of in-

terest are (1) the ability to combine different process tech-
nologies, (2) the latency of the TSVs, and (3) the size of the
TSVs. The first point is obviously necessary to stack DRAM
on top of a processor. The second point is important because
if the delay required to communicate between stacked lay-
ers is of the same order of magnitude as off-chip commu-
nication, then there will be very little potential for improv-
ing performance. Fortunately, it has been reported that the
vertical latency for traversing the height of a 20-layer stack
is only 12 ps [26]. Even though the TSVs are wider than

454454

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

Layer 1

Layer 2

Layer 3

Layer 4

Through Silicon
Vias (TSVs)

Metal Layers
Transistors

10−50um

800−1000um

Bulk Silicon

Heat Sink

< 10um

Figure 2. Cross-sectional view of 3D-stacked dies with a face-to-back topology (not drawn to scale).

typical metal routes, they are very short since each wafer
is thinned to only tens of microns. The TSVs have been
reported to have pitches of only 4-10μm [14]. Even at the
high-end with a 10μm TSV-pitch, a 1024-bit bus would only
require an area of 0.32mm2. To put that in perspective, a
1cm2 chip could support over three hundred of these 1Kb
buses. For the purposes of stacking DRAM, the TSV size
and latency will likely not be a limiting factor for several
generations.

2.3. 3D-Stacked DRAM

Previous studies have already started exploring the perfor-
mance benefits of using 3D integration to stack main mem-
ory on top of a processor. Figure 3(a) shows a tradi-
tional 2D processor core with multiple layers of 3D-stacked
DRAM [20, 24, 26]. The 3D TSVs implement a vertical bus
across the layers to connect the DRAM layers to the proces-
sor core. Independent of the required latencies, the topol-
ogy and overall architecture of these processor-memory 3D
organizations are no different than that used in traditional
off-chip memories. Liu et al. [24] and Kgil et al. [20] do
consider using the dense TSV interface to implement wider
buses, which are traditionally limited by pin-count, but they
do not observe a large performance benefit due to the small
sizes of their workloads and critical-word-first delivery of
data from memory.
The previous approaches do not fully exploit 3D stack-

ing technology because the individual structures are all still
inherently two-dimensional. Tezzaron Corporation has an-
nounced “true” 3D DRAMs where the individual bitcell ar-
rays are stacked in a 3D fashion [38, 39]. Figure 3(b) shows
the overall organization. The top N layers consist of the
stacked DRAM bitcells; this stacked organization reduces
the lengths of internal buses, wordlines and bitlines, which

in turn reduces the access latency of the memory. The bot-
tom layer implements the various control and access circuits,
such as the row decoder, sense amplifiers, row buffers and
output drivers. The advantage of isolating the peripheral
circuitry to a separate, dedicated layer is that different pro-
cess technologies can be incorporated. The DRAM bitcells
are all implemented in a traditional NMOS technology opti-
mized for density, whereas the peripheral circuits are imple-
mented on a CMOS layer optimized for speed. The combi-
nation of reducing bitline capacitance and using high-speed
logic provides a 32% improvement in memory access time
(tRAS) for a five-layer DRAM (four layers of memory plus
one layer of logic). Note that this latency reduction is for
the memory array access itself, and this is additive with any
benefits due to placing the memory closer to the processor.

2.4. Methodology and Assumptions

In this section, we briefly describe the processor microar-
chitecture, memory system and 3D integration assumptions
that we use. We base our baseline processor on the Intel
45nm “Penryn” model [19], detailed in Table 1, extended
to a quad-core configuration. We use the SimpleScalar
toolset for the x86 ISA for performance evaluation [3], and
we extended it to perform cycle-level modeling of a multi-
core processor. The simulator models the contention for
cache/memory buses, MSHR capacity, traffic due to write-
back and prefetches, and memory controller request queue
capacity. For the DRAM, we model the low-level tim-
ing including precharge delays (including when it can be
overlapped with other commands), different timings for row
buffer hits and misses, and the effects of periodic DRAM
refreshing. We assume a memory controller implementation
that attempts to schedule accesses to the same row together
to increase row buffer hit rates [34]. For the off-chip DRAM,
we assume a refresh period of 64ms, and the on-chip ver-

455455

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

Core(s) and
L2 Cache

Core(s) and
L2 Cache

between DRAM and MC
Data and Addr buses

between DRAM and MC
Data and Addr buses

One Rank

DRAM Cells

Peripheral Logic

One Rank

Peripheral
Logic

DRAM
Cells

(a) (b)

Figure 3. 3D-stacked DRAM on CPU with (a) one rank per layer and (b) ranks split across multiple layers.

Cores 4
Clock Speed 3.333 GHz

Fetch 16 bytes per cycle
Br. Pred. TAGE (4KB, 5 tables) [35]

Fetch→Exec 14 stages min. mispred. penalty
Decoders 1 Complex, 3 Simple: 4/1/1/1

Dispatch Width 4 μops/cycle
RS/LDQ/STQ/ROB Sizes 32/32/20/96 entries

Exec Width 6 μops/cycle
Integer ALUs 3 Simple, 1 Branch, 2 Shift, 1 Mult, 1 Div
F.P. ALUs 1 Add, 1 Mult, 1 Div (shared with Int)
Ld/St Exec 1 Load, 1 Store Addr, 1 Store Data
Commit Width 4 μops/cycle
IL1/DL1 24KB, 12-way, 64-byte line,

2-cycle (+1 for addr. comp.), 8 MSHR
ITLB 32-entry, 4-way set-associative, 2-cycle
DTLB 64-entry, 4-way

Prefetchers Nextline (IL1/DL1)
IP-based Stride (DL1) [9]

DL2 12MB, 24-way, 64-byte line,
16 banks, 9-cycle, 8 MSHR

Prefetchers Nextline, IP-based Stride
FSB 64-bit, 833.3 MHz (→ 1.66 GHz DDR)

Memory (2D) 8GB, 8 ranks, 8 banks, 64-bit FSB
tRAS=36ns, tRCD, tCAS, tWR, tRP=12ns each

Memory (true-3D) tRAS=24.3ns, tRCD, tCAS, tWR, tRP=8.1ns each

Table 1. Baseline quad-core processor parameters.

sions use a refresh period of 32ms to account for the higher
leakage rates due to higher temperature operation [11].1 We
assume eight banks per rank and a memory page size of 4096
bytes.
Our simulator does not support the system calls required

for cooperative multi-threaded applications, so we instead
use multi-programmed workloads. We first observed the L2

1These refresh rates are consistent with those specified in the datasheets
for the Samsung K4T51083QE DDR2 SDRAM part on which we base our
memory parameters.

cache miss behaviors for a wide variety of applications and
selected those that exhibited the highest cache miss rates
when running alone on a single core with a 6MB L2 cache.
The 24 applications listed in Table 2(a) had the highest L2
miss rates; these include programs from SPECcpu’s integer
and floating point suites for both the 2000 and 2006 editions,
bioinformatics workloads [1], MediaBench-I and II [10, 23],
and one application fromMiBench [15]. We also include the
Stream workload which is particularly taxing on the mem-
ory system [28]. In addition to the original Stream work-
load, we also used decomposed versions of Stream where
each version performs only one of the four basic operations
used in the original benchmark (scale, copy, add and triad).
In all cases, we use the SimPoint 3.2 toolset to choose rep-
resentative execution samples [16].

We group our applications based on cache miss rates,
and then we form several multi-programmed workloads as
listed in Table 2(b). In this work, we are primarily con-
cerned with workloads that exhibit relatively high memory
demands, otherwise there would not be much point in de-
signing faster memory architectures. These workloads are
those with all high-miss (H) and very-high-miss (VH) appli-
cations. Nonetheless, we also consider workloads consisting
of moderate-miss applications (M) and a mix of both high
and moderate (HM) to ensure that our optimizations do not
inadvertently degrade performance for these cases, as well
as to provide an idea of how the benefits reduce when mem-
ory is not the major bottleneck. For all experiments, our
primary results report the geometric mean speedups across
the H and VH workloads. While we also provide supple-
mentary speedup results across all four workload classes
(H/VH/HM/M), most discussions will be focused only on

456456

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

Benchmark MPKI
Name and Suite (6MB)
S.copy Stream 326.9
S.add Stream 313.2
S.all Stream 282.2
S.triad Stream 254.0
S.scale Stream 252.1
tigr BioBench 170.6
qsort MiBench 153.6

libquantum I’06 134.5
soplex F’06 80.2
milc F’06 52.6

wupwise F’00 40.4
equake F’00 37.3
lbm F’06 36.5
mcf I’06 35.1

Benchmark MPKI
Name and Suite (6MB)

mummer BioBench 29.2
swim F’00 18.7

omnetpp I’06 14.6
applu F’06 12.2
mgrid F’06 9.2
apsi F’06 3.9
h264 Media-II 2.9
mesa Media-I 2.4
gzip I’00 1.4
astar I’06 1.4
zeusmp F’06 1.4
bzip2 I’06 1.4
vortex I’00 1.3
namd F’06 1.0

High Miss Rate HMIPC
H1 S.all, libquantum, wupwise, mcf 0.153
H2 tigr, soplex, equake, mummer 0.105
H3 qsort, milc, lbm, swim 0.406

Very High Miss Rate HMIPC
VH1 S.all × 4 0.065
VH2 S.copy, S.scale, S.add, S.triad 0.058
VH3 tigr, libquantum, qsort, soplex 0.098

High-Moderate Mixes HMIPC
HM1 tigr, equake, applu, astar 0.138
HM2 libquantum, mcf, apsi, bzip2 0.386
HM3 milc, swim, mesa, namd 0.907

Moderate Miss Rate HMIPC
M1 omnetpp, apsi, gzip, bzip2 1.323
M2 applu, h264-decode, astar, vortex 1.319
M3 mgrid, mesa, zeusmp, namd 1.523

(a) (b)

Table 2. (a) Simulated benchmarks, originating suites (I=SpecInt, F=SpecFP, ’00=cpu2000, ’06=cpu2006, Media=MediaBench),
and stand-alone (single-threaded) DL2 cache miss rates, (b) four-threaded workloads used in this study. HMIPC is the har-
monic mean IPC across all four benchmarks of a workload when executing on the baseline processor configuration using off
chip (non-3D) memory.

the H and VH groups. We did evaluate many more applica-
tion mixes from each of these groups, but the overall results
and conclusions were the same and so we do not include
them for the sake of brevity.
For each mix, we warm the caches for 500 million x86

macro instructions per application (which is usually more
than 500 million μops) prior to detailed cycle-level simula-
tion for 100 million instructions. When an application fin-
ishes executing 100 million instructions, we freeze its statis-
tics (e.g., IPC) but then continue simulating the program so
that it continues to compete for the shared L2 cache and bus
resources (this is effectively the same as some other recent
multi-core simulation methodologies [33]). Since we collect
statistics across an equal number of instructions per bench-
mark, the “total” reported IPC per workload uses the har-
monic mean (HMIPC). Table 2(b) includes the HMIPC per
workload on the baseline processor configuration with off-
chip DRAM.
We assume a total of 8GB of physical memory for our

quad-core system. We perform a virtual-to-physical mem-
ory translation/allocation based on a first-come-first-serve
basis, and all accesses to the L2 and main memory deal
with physical addresses only. Current DRAM memory den-
sities are as high as 10.9 megabits (Mb) per mm2 (or 1.36
megabytes/MB) in a 80nm process. Scaling this to 50nm
yields a density of 27.9Mb/mm2 (3.5MB). For our study, we
assume 1GB per layer, which implies an overall per-layer
footprint requirement of 294mm2. This die size is within the
range of current quad-core systems; for example, the AMD
Barcelona 45nm quad-core processor is reported to have a
die size of 285mm2 [2]. This means we need eight stacked
layers (nine if the logic is implemented on a separate layer
as described in Section 2.3) to realize 8GB of physical mem-
ory.
We also conduct thermal analysis of 3D-stacked DRAMs

using the University of Virginia HotSpot toolset [36]. Our

findings, however, are consistent with previously reported
results [26], and so we omit them due to space limita-
tions. The important result is that the worst-case tempera-
ture across the entire 3D stack is still within the maximum
thermal limit of the SDRAMs as specified by the Samsung
datasheets.

3. DRAM-on-Processor Organizations
In this section, we present our performance analysis of 3D-
stacked memory-on-processor configurations based on tra-
ditional memory architectures. For the previously proposed
configurations [20, 24, 26], we assume an organization with
one rank per die. Since we evaluate a system with 8GB and
1GB per die, this results in eight total ranks. Figure 4 shows
the performance speedups of simple 3D-DRAM stacking.
The 2D configuration is the baseline where main memory
is located off chip. The memory controller is on-chip, but
we assume that it is clocked at the FSB speed. The 3D con-
figuration assumes the memory is now stacked on the cores
and the FSB and memory controller run at the same speed as
the processor core. The timing of the memory arrays them-
selves are still the same (i.e., tCAS, tRAS, etc. are unchanged;
this is consistent with the methodology used by Loi et al. for
their 3D memory parameters [26]). 3D-wide is the same as
3D, except that the bus has been increased to 64 bytes which
matches the size of an entire L2 cache line. Finally, 3D-fast
extends 3D-wide to make use of “true” 3D-split DRAMs
in a 9-layer implementation (8×memory+1×logic). The
numbers reported in Tezzaron’s datasheets indicate that the
memory access latency for a five-layer implementation im-
proves by 32.5% over a traditional 2D memory. While we
would expect an even greater benefit for a nine-layer ver-
sion due to further reductions in intra-array interconnects,
we conservatively assume a latency benefit equal to that of
the five-layer version. The exact timings are listed in Ta-
ble 1(b), although everything is rounded up to be integral

457457

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

multiples of the CPU cycle time (e.g., the CAS latency (CL)
is an integer number of cycles).
The results in Figure 4 show that for even these simple

approaches to 3D-stacking memory, the performance bene-
fits are quite substantial. Note that all results are reported as
speedups over the 2D (off-chip DRAM) configuration. Sim-
ply placing the DRAM on the same stack as the processor
(3D) provides a 34.7% (26.3%) increase in performance on
our memory-intensive workloads (all workloads). Note that
this is simply due to reducing wire delay between the mem-
ory controller and main memory, and running the memory
controller at a faster speed.
Implementing a wider bus to memory enables data trans-

actions to complete in fewer bus cycles. Expanding the bus
to 64 bytes increases the performance benefit to 71.8% over
2D. It has been previously reported that increasing bus width
does not provide a significant performance boost since the
multiple cycles of data transfer occur with critical-word-first
ordering which effectively does not impact a load’s execu-
tion latency [24]. The difference is that in our simulations,
the contention for the memory bus is much greater due to
differences in the application selection (e.g., SPEC2006 has
much larger working sets than SPEC2000, especially for
FP [12]) and our multi-core configuration directly multi-
plies the amount of memory traffic as well. Increasing the
bus width allows each L2 miss to occupy the bus for many
fewer cycles which allows memory transactions from other
cores to proceed that much sooner. These results demon-
strate that different baseline assumptions can lead to very
different conclusions and recommendations for the design
of 3D-stacked DRAMs.
Finally, implementing the DRAM arrays as true 3D struc-

tures reduces the actual latency per access, resulting in a to-
tal of 116.8% performance improvement (2.17× speedup)
over 2D. The benefits do vary by workload; for example, the
moderate-miss applications do not observe as large of a ben-
efit, but this makes sense since these programs have better
L2 cache hit rates and therefore spend less time waiting on
memory in the first place. The general trends are fairly con-
sistent, with each optimization from 2D to 3D to 3D-wide to
3D-fast providing an approximately equal additional perfor-
mance boost. This indicates that in a heavily loaded mem-
ory system, the latency to memory (MC→DRAM), the la-
tency of memory (array access time), and the latency to even
get to access memory (bus contention) are all very signif-
icant factors. 3D-fast represents the combination of all of
these previously proposed techniques, and we use this high-
performance configuration as our baseline for comparison in
the next section. That is, our reported performance gains are
in addition to those already provided by this 3D-fast config-
uration.

4. More Aggressive 3D Memory Organizations
We have verified that even simple approaches to 3D stacking
can provide a significant benefit on our workloads. Note

0

1

2

3

H1 H2 H3
VH1

VH2
VH3

HM
1

HM
2

HM
3

M
1

M
2

M
3

GM
(H

,V
H)

GM
(a

ll)

S
pe

ed
up

2D 3D +wide bus +true 3D

Figure 4. Performance speedup of simple 3D-stacked
memories compared to off-chip (2D) memory.

that the topology of these organizations are largely the same
as traditional off-chip memories: single shared bus, single
memory controller interface, relatively few ranks. Note that
for all remaining 3D-stacked DRAM designs discussed in
this paper, we will assume “true” 3D-split organizations.

4.1. Ranks and Memory Interfaces

We first consider varying two parameters: the number of
ranks and the number of memory controller interfaces. In-
creasing the number of ranks is straightforward as it simply
amounts to reorganizing the memory into a larger number
of smaller arrays. This is traditionally not practical due to
pin and chip-count limitations, but the plentiful die-to-die
bandwidth in 3D makes this a viable option. There are a
few ways to increase the number of memory controller in-
terfaces. One approach is to use a single memory controller,
but increase the number of channels where each channel ac-
cesses a disjoint set of ranks. Another approach is to im-
plement multiple, or banked, memory controllers. Tradi-
tionally, multiple memory controllers would not be practical
because the CPU package would require more pins to inde-
pendently communicate with the different MCs, and then the
additional MCs increase the chip count and overall mother-
board routing and total area. In a 3D stack, however, the
routing is far more flexible, and, so long as silicon area is
available, implementing additional MCs is not a great hur-
dle. Note that the peripheral logic layer in Figure 3(b) con-
tains a significant amount of whitespace that can be used for
the additional logic that we require. Figure 5 shows the dif-
ferent design options that we consider with varying numbers
of ranks and MCs. The bold lines illustrate which ranks are
accessed by which MCs.
We maintain a constant total aggregate capacity of 32 re-

quests across all MCs for all experiments. For example, a
four-MC configuration would have an eight-entry request
queue per MC. To the first order, the amount of MC state,
area, and power will be proportional to the total aggregate
capacity, and therefore the area and power are about the
same across configurations, independent of the total number
of MCs used. The MC arbitration/scheduling logic actually
becomes less costly since four 8-entry schedulers are gener-
ally easier to implement than a single, monolithic 32-entry
scheduler.
It is necessary to briefly discuss the L2 cache and miss

handling architecture organizations. The example in Fig-

458458

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Bus/Routing to/from L2

MSHR1 MSHR2 MSHR3MSHR0

MC1 MC2 MC3MC0

Rank0

Rank1

Rank2

Rank3

Rank4

Rank5

Rank6

Rank7

Rank8

Rank9

Rank10

Rank11

Rank12

Rank13

Rank14

Rank15

0

1

2

3

4

5

6

7

8 10

11

12 14

9 13 15

Core0 Core1 Core2 Core3

L2
 C

ac
he

C
or
e
0

C
or
e
1

C
or
e
2

C
or
e
3

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

Processor-Layer Floorplan

R
an
k
2

R
an
k
4

R
an
k
6

R
an
k
7

R
an
k
5

R
an
k
3

R
an
k
1

R
an
k
0

Memory Controller 0

Memory Controller 0

R1

R2

R3

R5

R6

R7

R9

R10

R11

R13

R14

R15

R0 R4 R8 R12

R
an
k
2

R
an
k
4

R
an
k
6

R
an
k
7

R
an
k
5

R
an
k
3

R
an
k
1

R
an
k
0

R2 R6 R10 R14

R0 R4 R8 R12

MC0 MC1

MC0 MC1

R
an
k
2

R
an
k
4

R
an
k
6

R
an
k
7

R
an
k
5

R
an
k
3

R
an
k
1

R
an
k
0

R2 R6 R10 R14

R0 R4 R8 R12

MC0 MC1

MC0 MC1

MC2 MC3

MC2 MC3
R1 R5 R9 R13

R3 R7 R11 R15R15R11R7R3

R1 R5 R9 R13

Increasing number of Memory Controllers

Increasing
num

berofR
anks

12MB L2 Cache (16 Banks)

Example Organization
4 MSHR banks, 4 MCs, 16 Ranks

�

Figure 5. (a) Floorplan examples for varying the number of memory controllers and ranks. (b) Example configuration.

ure 5(b) illustrates the overall organization of a 16-bank
L2 cache with four-way banked memory controllers and 16
memory ranks. At the L2 level, bank interleaving typically
occurs at the granularity of cache lines. That is, an access
to address x would get routed to L2 bank number x � 6
(mod 16), assuming 64-byte cache lines and 16 banks. Main
memory, however, is interleaved based on the physical page
size (4KB in our study). The mismatch in banking granular-
ities means that any L2 bank may need to read-from/write-
to any memory controller, requiring either a bus or a cross-
bar connecting every L2 bank to every MC. Therefore, we
change the banking of the L2 such that the interleaving oc-
curs on 4096-byte boundaries rather than 64 bytes. This re-
sults in a far more streamlined communication layout, where
each set of L2 banks routes to one and only one MC.We also
bank our MSHRs [37] in a similar fashion such that when a
miss occurs in one of the L2 cache banks, the miss attempts
to allocate an MSHR only in the bank aligned with its mem-
ory controller. Note that the only significant “horizontal”
routing occurs in getting to an L2 bank; after that, all re-
maining communications are effectively “vertical.” For ex-
ample in Figure 5(b), if Core 3 accesses an address in bank 2,
after the request reaches cache bank 2, all subsequent com-
munications remain within the shaded region marked with a
star (�) since a miss in bank 2 can only allocate in MSHR0,
which can only communicate with MC0, which can only ac-
cess ranks 0 through 3.
Figure 6(a) shows the results of increasing the number

of ranks and memory controllers. We report the geomet-
ric mean speedups over the 3D-fast configuration for the
H and VH workloads (the numbers in parentheses are the
geometric mean speedups across all four workload groups).
The per-workload trends are similar to those reported in Fig-
ure 4. As we increase the number of memory channels, per-

formance improves because a larger number of memory re-
quests can be processed in parallel. In addition to the in-
creased parallelism, performance also benefits for other rea-
sons. First, since each MSHR bank directly communicates
with its banked MC, there is no need for a globally shared
bus between all MCs which greatly reduces delays due to
bus contention. Second, the MC schedulers process requests
from only a subset of the overall physical memory space,
which increases the opportunities to find and reschedule ac-
cesses to open pages.
As we increase the number of ranks, performance also

improves, but not nearly by as much as increasing the num-
ber of memory interfaces. Increasing the number of ranks
directly increases the total number of banks in the memory
system. Since each bank has its own row buffer, this re-
sults in a memory system being able to keep a much larger
number of rows open at the same time. Even though the
performance benefits are rather small in comparison to the
previous changes, increasing the number of ranks is likely
desirable because it reduces the size of each of the individual
banks. This can decrease the lengths of wordlines and bit-
lines, resulting in further reductions in access latency and si-
multaneous reductions in the dynamic power consumed per
access. Overall, increasing the number of ranks to 16 and
the number of MCs to 4 provides an average performance
benefit of 33.8% on top of the 3D-fast configuration, on our
memory-intensive workloads.
Increasing the number of ranks also increases the total

number of row buffers which requires additional logic; ad-
ditional logic that could possibly be put to other uses. An
eight-rank configuration has eight banks per rank, with one
4KB row buffer per bank. This totals to 256KB of storage to
implement all of the row buffers. Increasing this to 16 banks
requires an additional 256KB for the row buffers. There-

459459

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

1 RB 2RBs 3RBs 4RBs

8 Ranks

16 Ranks

1.004 1.004 1.143

4MCs2MCs1MC

1.001 1.00

+512KB L2

+1MB L2

+13.2% +17.0%

+13.8%

+0.4% +1.1%+1.0%

+0.1%

+0.2%

+17.1%

1.338
(1.004)

(1.085)

(1.092) (1.196)

(1.188)

(1.004)

(1.001)

(+0.2%)

(1.00)

(+0.4%) (+0.7%) (+0.7%)

1.132 1.324

(+9.5%)(+8.8%)

(+8.5%) (+9.5%)(+0.1%)

1.338

(1.085)

(1.196)

+24.4% +7.0% +2.7%

+24.9% +3.6% +0.9%

1.132
(1.298)

1.408 1.507 1.547
(1.227) (1.278)

1.671 1.731 1.747
(1.355) (1.384) (1.395)

(+0.8%)(+2.2%)(+13.2%)

(+13.1%) (+4.2%) (+1.6%)

(a)

Increasing Row Buffer Entries (per bank)

(b)

Figure 6. Performance benefit over the 3D-fast configuration for (a) increasing memory controllers and memory ranks, and
then (b) further increasing the number of row buffer entries per bank.

fore we also include results for the original 8-rank 3D-fast
where we instead use the additional transistor budget to in-
crease the L2 cache size by 512KB and 1MB. Despite the
fact that the additional L2 storage would be faster to access
than main memory, adding less state in the form of more row
buffers is actually better than adding more state in the form
of additional L2 cache. The reason for this is that, for our
memory-intensive workloads, the additional L2 cache only
slightly decreases the number of misses while the increase
in the row buffer hit rate greatly reduces the average latency
for the many remaining misses.

4.2. Making Use of the Extra Space
When implementing “true” 3D-stacked memory arrays, the
amount of silicon required on the bottom logic layer does
not actually consume all of the available silicon real estate.
Increasing the number of ranks would consume some of this
area as mentioned earlier. We also consider one further op-
timization, which is to increase the storage capacity from a
single row buffer entry to a multiple-entry row buffer cache
(also called cached DRAM) [17]. Any access to a mem-
ory bank performs an associative search on the set of row
buffers, and a hit avoids accessing the main memory array.
We manage the row buffer entries in an LRU fashion.
Figure 6(b) shows the performance impact of increasing

the number of row-buffer entries per bank from one (base-
line) to four for the two highlighted configurations from Fig-
ure 6(a). We chose these two configurations as they repre-
sent different levels of aggressiveness in terms of modifying
the memory system organization. The majority of the ben-
efit comes from adding the first additional row buffer entry.
Even with diminishing performance benefits, adding more
row buffer entries may still be desirable because each row
buffer cache hit avoids the power needed to perform a full
array access. Increasing row buffer cache size and increas-
ing the number of ranks both result in an overall increase in
the number of open pages; adding row buffer cache capac-
ity, however, is clearly a bigger win. The reason for this is
very similar to how increasing a cache size by increasing the

number of sets is often not as effective as increasing the set
associativity.
Section 3 demonstrated that previously explored

“straight-forward” 3D-DRAMs provide considerable per-
formance benefits. An important conclusion of our results is
that to fully exploit 3D technology, the interface between the
stacked modules needs to be re-optimized. We emphasize
that the 1.75× speedup shown in Figure 6(b) is in addition
to the 2.17× speedup provided by the full combination of
the simpler 3D-memory stacking techniques (for a total of
3.80× speedup over 2D).
5. A Scalable L2 Miss Handling Architecture
We have thus far kept the capacity of the L2 miss handling
architecture (MHA) constant across all configurations so
that performance improvements could be entirely attributed
to the changes in the 3D-stacked memory. The organization
and capacity of the MHA does, however, play a significant
role on overall performance.

5.1. Increasing MSHR Capacity
Our baseline configurations all assumed MSHR capacities
of eight entries for each of the DL1 caches and eight for
the shared L2. At first, this may seem like the L2 MSHR
may be an unfairly constrained bottleneck since four cores
times eight L1 MSHR entries would suggest that the L2
should have 32 MSHR entries. Note that, however, most
DL1 misses should (hopefully) still result in L2 hits, in
which case fewer L2 MSHRs would be required. Zhao et
al.’s multi-core study assumed 16 L2 MSHRs for a 32-core
system [42], and Kim et al. used 8 MSHRs for a quad-core
system [21]; our baseline configuration is similarly sized
and thus represents a reasonably fair baseline. Furthermore,
under-provisioning the MSHR capacity is conservative for
our previous studies because it prevents full utilization of
the additional bandwidth and memory parallelism provided
by our 3D-stacked memory organization.
We now explore the performance impact of increasing the

number of outstanding misses from the L2. We start with

460460

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

2 MCs, 8 Ranks, 4 Row Buffers 4 MCs, 16 Ranks, 4 Row Buffers

-10%

0%

10%

20%

30%

40%

50%

60%

H
1

H
2

H
3

V
H

1

V
H

2

V
H

3

H
M

1

H
M

2

H
M

3

M
1

M
2

M
3

G
M

(H
,V

H
)

G
M

(a
ll)

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

2xMSHR 4xMSHR 8xMSHR Dynamic

-10%

0%

10%

20%

30%

40%

50%

60%

H
1

H
2

H
3

V
H

1

V
H

2

V
H

3

H
M

1

H
M

2

H
M

3

M
1

M
2

M
3

G
M

(H
,V

H
)

G
M

(a
ll)

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

2xMSHR 4xMSHR 8xMSHR Dynamic

(a) (b)

Figure 7. Performance impact of increasing the L2 MSHR capacity for (a) dual-MC/8-rank and (b) quad-MC/16-rank 3D-DRAM.

two baseline configurations: one with two MCs and eight
ranks, the other with four MCs and sixteen ranks. Both con-
figurations have four row-buffer entries per bank and cor-
respond to the two rightmost configurations in Figure 6(b).
From here, we increased the MSHR capacity of each con-
figuration by factors of 2, 4 and 8. Figure 7 shows the
performance impact of varying the total MSHR capacity.
Overall, performance improves when doubling and quadru-
pling the capacity of the L2 MSHR. For applications like
the Stream benchmarks that generate a very large number of
misses, increasing the L2 miss handling capacity will obvi-
ously be of benefit. Further increasing the MSHR capacity
either provides no significant additional benefit, or in some
cases hurts performance compared to the 4× capacity con-
figuration. For two of the lower memory traffic workloads
(HM2 and M2), increasing MSHR capacity can result in a
performance degradation compared to the baseline MSHR
size. While the high-memory traffic workloads are the fo-
cus of this study, optimizations that negatively impact other
application mixes are not desirable. After carefully analyz-
ing simulator statistics, we found that increasing the num-
ber of outstanding misses can have a negative effect on L2
cache hit rates. The many additional requests can cause the
eviction of lines that are still useful. Effectively, by having
too many requests coming and going, this causes significant
increase in L2 “churn” resulting in performance losses for
these workloads.

To provide greater MSHR capacity while at the same time
preventing any performance degradations, we make use of
a simple dynamic MSHR capacity tuning scheme. Each
MSHR has a limited number of possible sizes; 1×, 1

2× and
1
4× the maximumMSHR size in our simulations. The resiz-
ing algorithm uses a brief training phase where the proces-
sor runs with different limits on the MSHR size and records
the number of committed μops from each core for each set-
ting. The processor then fixes the MSHR size at the setting
that performed the best during sampling until the next sam-
pling period. Similar training techniques have been used for
other processor optimizations [4, 31]. Figure 7 also includes
the performance of dynamic MSHR capacity tuning. While
this technique does not provide any significant overall per-

formance benefit, it yields a more robust design where the
larger MSHRs do not negatively impact performance on any
of our workloads.

5.2. Scalable L2 MSHRs
Having demonstrated that larger MSHRs can be consistently
put to use to increase performance, we now discuss the
problem of building larger MSHRs. MSHRs are relatively
complex, fully associative structures. Traditional CAM-
based implementations do not scale well, which has lead
researchers to invent other organizations. Tuck et al. pro-
posed a hierarchical MSHR organization that uses several
small, banked MSHRs at the first level, and then a larger
shared MSHR at the second level [40]. This organization
provides high bandwidth because all of the banks can be
accessed independently. The shared MSHR provides addi-
tional “spare” capacity when an individual bank receives too
many requests. We do not use hierarchical MSHRs for the
L2 cache because all MSHR banks would need to route to
the shared MSHR, and then the actual miss request must
route back to the banked memory controllers. This would
break the streamlined floorplan illustrated in the example of
Figure 5. Note that the hierarchical MSHRs may still be a
reasonable match for a single-MC organization.
At the L1 level, high bandwidth is an important require-

ment of the MHA because the relatively higher miss rates of
the DL1 caches cause the MSHRs to be accessed far more
frequently. At the L2 level, however, MSHR bandwidth is
less important and the main goal is simply capacity. We
propose a new MSHR organization that uses a very scalable
direct-mapped structure rather than a fully-associate CAM-
based organization. We start with a simple direct-mapped
hash table. The address of the access can be used to hash
into a particular entry. If there is a miss, then one can sim-
ply proceed to check the next sequential entries until a hit
is found, or all entries have been checked which would in-
dicate a miss. For even moderately-sized MSHRs, however,
this would lead to a large number of probings, especially in
the case of a miss where all entries must be checked.
We propose a new data structure called the Vector Bloom

Filter (VBF) that reduces the number of probings for both
hit and miss situations. We will explain the operation of

461461

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

MSHRs

1

7
6
5
4
3
2

0

13
22
29

45

mod8

29
Addr

29

mod8

MSHRs

1

7
6
5
4
3
2

0

13
22
29

VBF

0 3 4 5 6 7

0
1
2

7
6
5
4
3

1 2

MSHRs

1

7
6
5
4
3
2

0

13
22

VBF

0 3 4 5 6 7

0
1
2

7
6
5
4
3

1 2

mod8

22

VBF

0 3 4 5 6 7

0
1
2

7
6
5
4
3

1 2

MSHRs

1

7
6
5
4
3
2

0

13

mod8

13
Addr

VBF

0 3 4 5 6 7

0
1
2

7
6
5
4
3

1 2

(5)
(2)

MSHRs

1

7
6
5
4
3
2

0

13
22

45

29
(dealloc)

VBF

0 3 4 5 6 7

0
1
2

7
6
5
4
3

1 2

bit clear

MSHRs

1

7
6
5
4
3
2

0Addr
45

mod8

13
22
29

45

(5)

VBF

0 3 4 5 6 7

0
1
2

7
6
5
4
3

1 2

(3)

mod 8

(f)(e)(d)(c)(b)(a)

mod8

45

45

Figure 8. Example operation of a direct-mapped MSHR with the Vector Bloom Filter.

2 MCs, 8 Ranks, 4 Row Buffers 4 MCs, 16 Ranks, 4 Row Buffers

-10%

0%

10%

20%

30%

40%

50%

60%

H
1

H
2

H
3

V
H

1

V
H

2

V
H

3

H
M

1

H
M

2

H
M

3

M
1

M
2

M
3

G
M

(H
,V

H
)

G
M

(a
ll)

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

8xMSHR VBF Dynamic V+D

-10%

0%

10%

20%

30%

40%

50%

60%

H
1

H
2

H
3

V
H

1

V
H

2

V
H

3

H
M

1

H
M

2

H
M

3

M
1

M
2

M
3

G
M

(H
,V

H
)

G
M

(a
ll)

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

8xMSHR VBF Dynamic V+D

(a) (b)

Figure 9. Additional performance benefit of the proposed L2 MHA over our 3D-stacked memory organizations.

the VBF and the direct-mapped MSHR with the example
shown in Figure 8. The MSHR is initially empty. (a) A miss
on address 13 occurs, and we compute a hash based on the
number of MSHR entries; in this case 13 mod 8 yields an
index of 5, and we allocate this entry. On the side, we have
our VBF data structure which consists of one row (vector)
per MSHR entry, with one column per MSHR entry as well.
Using the same index, we choose the fifth row of the VBF,
and we place a 1 (�) in column zero. (b) We have a differ-
ent miss to address 22, which maps to index 6. We allocate
entry 6 and set the bit in column zero of row 6 of the VBF.
(c) We have an access to address 29 which also maps to in-
dex 5. In this case, MSHR 5 is already used, so we allocate
the next sequentially available entry, which turns out to be
entry 7. This time in the VBF, we mark the bit in column two
of row 5. The reason for this is that we have now allocated
an entry that is two positions from the default position of 5.
A subsequent miss for address 45 also maps into the same
set and gets allocated entry 0 (the updates for this are shown
in red/grey). (d) We search for address 29, and we access
MSHR entry 5 and the VBF in parallel. If there is a match
with MSHR 5, then we have a hit and are done. In this case,
there is a miss and so we consult VBF row 5 to determine
the next MSHR entry to search. The bit vector indicates that
the next possible candidate is two entries away, and so on
the next cycle we check MSHR entry 7 which turns out to
be a hit. (e) The miss for address 29 has been serviced and
we deallocate the corresponding MSHR entry. At this point,
we simply invalidate the MSHR entry and clear the corre-
sponding bit in the VBF (row 5, column 2). (f) A search for

address 45 occurs. The first step is the same as before where
we check MSHR entry 5 and read row 5 from the VBF in
parallel. This is a miss, so we consult the VBF information
to determine the next MSHR entry to check. Since the previ-
ous deallocation of address 29 causes the bit in column 2 to
get cleared, the next set bit is in column 3. Adding this offset
to our default MSHR position tells us to check MSHR entry
5 + 3 (mod 8) = 0, where we have a hit. Note that with only
linear probing (no VBF), this search for address 45 would
have required a total of four probings (check MSHR entries
5,6,7 and 0), whereas the VBF reduces this to only two (5
and 0).

As described, our VBF-based MSHR is effectively a hash-
table with linear probing,2 augmented with the VBF which
speeds up the search by remembering the entries that defi-
nitely do not contain the address that we are searching for.
A ‘1’ in an VBF row does not guarantee that the requested
address is at that (relative) location, but a ‘0’ means that it
is definitely not. The possibility for a false hit is why we
consider this algorithm to be a form of a Bloom Filter [6].
Note also that on a miss, we can quickly check to see if all
columns in a row are zero; if that is the case, then there is
definitely a miss and no further probings are required. The
VBF size increases quadratically with the number of MSHR
entries per bank, but banking results in relatively few en-

2We also experimented with other secondary hashing schemes, such
as quadratic probing, to deal with potential problems of miss clustering.
The VBF, however, does a sufficiently good job and reducing probings that
there was no measurable difference between the different secondary hash-
ing techniques that we studied.

462462

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

tries per bank, and so even for the largest per-bank MSHR
size that we consider (32 entries), the VBF bit-table only
requires 128 bytes of state. The direct-mapped MSHR cou-
pled with the VBF can provide scalable MSHR capacity for
the L2 MHA. This approach is not likely to be as effective
at the DL1 MSHRs due to the L1’s need for much greater
access bandwidth, and so previously described techniques
such as the hierarchical MSHRs would be more appropriate
there [40].
The VBF can potentially reduce performance by increas-

ing the search latency of the MSHR structures. Figure 9
shows the performance impact of using our new MSHR
scheme. Using the direct-mapped VBF-based L2 MHA,
we achieve performance that is about the same as the ideal
(and impractical) single-cycle, fully-associative traditional
MSHR. The reason for this is that the VBF mechanism
is very effective at filtering out unnecessary MSHR prob-
ings. On average, the dual-MC configuration required 2.31
probings per MSHR access and the quad-MC configura-
tion needed 2.21 probings per access, which includes the
first mandatory access. In the pathological case of HM2
on the four-MC configuration, the additional latency of
the VBF checks results in an overall performance penalty
of 7% compared to the baseline configuration with de-
fault MSHR sizing. The results in Figure 9 shows that
by combining our VBF scheme with dynamic MSHR re-
sizing (V+D), we can provide a robust, scalable, high-
performance L2 MHA for our 3D-stacked memory archi-
tecture. Overall, we observe 23.0% (17.8%) improvements
on our memory-intensive workloads over the baseline L2
MSHR architecture for the dual-MC (quad-MC) configura-
tion. Note that these gains are in addition to those from in-
creasing the ranks and memory interfaces of the 3D-stacked
DRAM, which provides overall speedups of 1.90× (2.06×)
over the previously proposed 3D DRAM organizations, and
4.13× (4.46×) over a conventional 2D system with off-chip
DRAM. Even when considering all workloads including the
less-memory-intensive applications, the overall speedups
benefits are still 1.46× (1.53×) over the simple 3D DRAM
organization, and 2.60× (2.73×) over off-chip memory.
Note that the benefits of our scalable L2 MHA are

uniquely required for 3D-stacked memory architectures. We
also evaluated the VBF+dynamic MSHR resizing approach
for a conventional 2D multi-core processor with off-chip
main memory and found that overall performance did not
improve, and in a few cases even we observed minor per-
formance degradations. The reason for this is in an off-chip
memory organization, there are many other bottlenecks that
must first be addressed before the L2 MSHRs constrain per-
formance.

6. Conclusions
Previous studies have already demonstrated that 3D stacking
of memory on processors can provide substantial relief from
the Memory Wall problem. In this study, we have demon-

strated that the prior attempts have left a lot of the poten-
tial performance benefit on the table. We have demonstrated
how to organize the memory architecture in a 3D environ-
ment to increase memory level parallelism through a stream-
lined arrangement of L2 cache banks, MSHRs, memory con-
trollers and the memory arrays themselves. We have also
taken advantage of the additional integration capacity to im-
prove page-level parallelism by increasing row buffer cache
capacity to maintain a larger set of open memory pages. Fi-
nally, we introduced a novel data structure called the Vector
Bloom Filter to enable a scalable L2 miss handling architec-
ture to complement the increased capacity of our 3D-stacked
memory system.
The main conclusion of this work is that to fully ex-

ploit 3D integration technology, we need to redesign and re-
architect those components that we wish to stack. While
there exist many “low-hanging fruits” such as stacking
conventionally-organized memory on a processor, stacking
more cache on a processor, and stacking multiple cores,
which will likely be pursued by industry in the shorter term,
we believe the most interesting computer architecture re-
search opportunities lie in efforts that target what can be
done with 3D beyond these natural first steps. We have
demonstrated that revisiting the memory system organiza-
tion in a 3D context can provide much more performance
than simply stacking “2D memory” on top of a processor,
and there are likely similar benefits for reconsidering the use
of 3D in the design of the processor core, multi-core organi-
zations, and even future many-core platforms.

Acknowledgments
This project was funded by NSF grant CCF-0643500; sup-
port was also provided by the Focus Center for Circuit
& System Solutions (C2S2), one of five research centers
funded under the Focus Center Research Program, a Semi-
conductor Research Corporation Program. Equipment was
provided by a grant from Intel Corporation.

References

[1] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W.
Tseng, and D. Yeung. BioBench: A Benchmark Suite of Bioinformat-
ics Applications. In Proceedings of the Intl. Symp. on Performance
Analysis of Systems and Software, pages 2–9, 2005.

[2] AMD Corporation. Barcelona PR Fact Sheet. http://www.amd.com,
September 2007.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure
for Computer System Modeling. IEEE Micro Magazine, pages 59–
67, February 2002.

[4] R. I. Bahar and S. Manne. Power and Energy Reduction Via Pipeline
Balancing. In Proceedings of the 28th Intl. Symp. on Microarchitec-
ture, pages 218–229, 2001.

[5] B. Black, M. M. Annavaram, E. Brekelbaum, J. DeVale, L. Jiang,
G. H. Loh, D. McCauley, P. Morrow, D. W. Nelson, D. Pantuso,
P. Reed, J. Rupley, S. Shankar, J. P. Shen, and C. Webb. Die-Stacking
(3D) Microarchitecture. In Proceedings of the 39th Intl. Symp. on
Microarchitecture, 2006.

463463

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

[6] B. H. Bloom. Space/Time Tradeoffs in Hash Coding with Allowable
Errors. Communications of the Association for Computing Machin-
ery, 13(7):422–426, July 1970.

[7] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A Performance Com-
parison of Contemporary DRAM Architectures. In Proceedings of
the 26th Intl. Symp. on Computer Architecture, pages 222–233, 1999.

[8] S. Das, A. Fan, K.-N. Chen, and C. S. Tan. Technology, Performance,
and Computer-Aided Design of Three-Dimensional Integrated Cir-
cuits. In Proceedings of the Intl. Symp. on Physical Design, pages
108–115, 2004.

[9] J. Doweck. Inside Intel Core Microarchitecture and Smart
Memory Access. White paper, Intel Corporation, 2006.
http://download.intel.com/technology/architecture/sma.pdf.

[10] J. E. Fritts, F. W. Steiling, and J. A. Tucek. MediaBench II Video:
Expediting the Next Generation of Video Systems Research. Embed-
ded Processors for Multimedia and Communications II, Proceedings
of the SPIE, 5683:79–93, March 2005.

[11] M. Ghosh and H.-H. S. Lee. Smart Refresh: An Enhanced Mem-
ory Controller Design for Reducing Energy in Conventional and 3D
Die-Stacked DRAMs. In Proceedings of the 40th Intl. Symp. on Mi-
croarchitecture, 2007.

[12] D. Gove. CPU2006 Working Set Size. Computer Architecture News,
35(1):90–96, March 2007.

[13] K. W. Guarini, A. W. Topol, M. Ieong, R. Yu, L. Shi, M. R. Newport,
D. J. Frank, D. V. Singh, G. M. Cohen, S. V. Nitta, D. C. Boyd, P. A.
O’Neil, S. L. Tempest, H. B. Pogge, S. Purushothaman, and W. E.
Haensch. Electrical Integrity of State-of-the-Art 0.13μm SOI CMOS
Devices and Circuits Transferred for Three-Dimensional (3D) Inte-
grated Circuit (IC) Fabrication. In Proceedings of the Intl. Electron
Devices Meeting, pages 943–945, 2002.

[14] S. Gupta, M. Hilbert, S. Hong, and R. Patti. Techniques for Producing
3D ICs with High-Density Interconnect. In Proceedings of the 21st
Intl. VLSI Multilevel Interconnection Conf., 2004.

[15] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. MiBench: A Free, Commerically Representative
Embedded Benchmark Suite. In Proceedings of the 4th Work. on
Workload Characterization, pages 83–94, 2001.

[16] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster
and More Flexible Program Analysis. In Proceedings of the Work. on
Modeling, Benchmarking and Simulation, 2005.

[17] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima. The Cache
DRAM Architecture. IEEE Micro Magazine, 10(2):14–25, April
1990.

[18] I. Hur and C. Lin. Adaptive History-Based Memory Schedulers. In
Proceedings of the 37th Intl. Symp. on Microarchitecture, pages 343–
354, 2004.

[19] Intel Corporation. Introducing the 45nm Next Generation Intel Core
Microarchitecture. Technology@Intel Magazine, 4(10), May 2007.

[20] T. H. Kgil, S. D’Souza, A. G. Saidi, N. Binkert, R. Dreslinski,
S. Reinhardt, K. Flautner, and T. Mudge. PicoServer: Using 3D
Stacking Technology to Enable a Compact Energy Efficient Chip
Multiprocessor. In Proceedings of the 12th Symp. on Architectural
Support for Programming Languages and Operating Systems, 2006.

[21] W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks. Enabling On-
Chip Switching Regulators for Multi-Core Processors using Current
Staggering. In Proceedings of the Work. on Architectural Support for
Gigascale Integration, 2007.

[22] D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organiza-
tion. In Proceedings of the 8th Intl. Symp. on Computer Architecture,
pages 81–87, 1981.

[23] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Communica-
tion Systems. In Proceedings of the 30th Intl. Symp. on Microarchi-
tecture, pages 330–335, 1997.

[24] C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the
Processor-Memory Performance Gap with 3D IC Technology. IEEE
Design and Test of Computers, 22(6):556–564, November–December
2005.

[25] G. H. Loh, Y. Xie, and B. Black. Processor Design in 3DDie-Stacking
Technologies. IEEE Micro Magazine, 27(3), May–June 2007.

[26] G. L. Loi, B. Agarwal, N. Srivastava, S.-C. Lin, and T. Sherwood. A
Thermally-Aware Performance Analysis of Vertically Integrated (3-
D) Processor-Memory Hierarchy. In Proceedings of the 43rd Design
Automation Conf., 2006.

[27] N. Madan and R. Balasubramonian. Leveraging 3D Technology for
Improved Reliability. In Proceedings of the 40th Intl. Symp. on Mi-
croarchitecture, 2007.

[28] J. D. McCalpin. Stream: Sustainable Memory Band-
width in High Performance Computers. Technical report,
http://www.cs.virginia.edu/stream/.

[29] S. Mysore, B. Agarwal, S.-C. Lin, N. Srivastava, K. Banerjee, and
T. Sherwood. Introspective 3D Chips. In Proceedings of the 12th
Symp. on Architectural Support for Programming Languages and Op-
erating Systems, 2006.

[30] D. Nelson, C. Webb, D. McCauley, K. Raol, J. Rupley, J. DeVale,
and B. Black. A 3D Interconnect Methodology Applied to iA32-class
Architectures for Performance Improvements through RCMitigation.
In Proceedings of the 21st Intl. VLSI Multilevel Interconnection Conf.,
2004.

[31] D. V. Ponomarev, G. Kucuk, and K. Ghose. Dynamic Allocation of
Datapath Resources for Low Power. In Proceedings of the Work. on
Complexity-Effective Design, Göteborg, Sweden, June 2001.

[32] K. Puttaswamy and G. H. Loh. Thermal Herding: Microarchitec-
ture Techniques for Controlling HotSpots in High-Performance 3D-
Integrated Processors. In Proceedings of the 13th Intl. Symp. on High
Performance Computer Architecture, 2007.

[33] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches. In Proceedings of the 39th Intl. Symp. on Microarchi-
tecture, pages 423–432, 2006.

[34] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory Access Scheduling. In Proceedings of the 27th Intl. Symp.
on Computer Architecture, pages 128–138, 2000.

[35] A. Seznec and P. Michaud. A Case for (Partially) TAgges GEomet-
ric History Length Branch Prediction. Journal of Instruction Level
Parallelism, 8:1–23, 2006.

[36] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-Aware Microarchitecture. In
Proceedings of the 30th Intl. Symp. on Computer Architecture, pages
2–13, 2003.

[37] G. S. Sohi and M. Franklin. High-Bandwidth Data Memory Systems
for Superscalar Processors. In Proceedings of the 18th Intl. Symp. on
Computer Architecture, pages 53–62, 1991.

[38] Tezzaron Semiconductors. Leo FaStack 1Gb DDR SDRAM
Datasheet. http://www.tezzaron.com/memory/TSC Leo.htm, August
2002.

[39] Tezzaron Semiconductors. Tezzaron Unveils 3D SRAM. Press Re-
lease from http://www.tezzaron.com, January 24 2005.

[40] J. M. Tuck, L. Ceze, and J. Torrellas. Scalable Cache Miss Handling
for High Memory Level Parallelism. In Proceedings of the 39th Intl.
Symp. on Microarchitecture, 2006.

[41] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications
of the Obvious. Computer Architecture News, 23(1):20–24, March
1995.

[42] L. Zhao, R. Iyer, S. Makineni, J. Moses, R. Illikkal, and D. Newell.
Performance, Area and Bandwidth Implications on Large-Scale CMP
Cache Design. In Proceedings of the Work. on Chip Multiprocessor
Memory Systems and Interconnects, 2007.

464464

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:12 UTC from IEEE Xplore. Restrictions apply.

