
DIMM-Link: Enabling Efficient Inter-DIMM
Communication for Near-Memory Processing

Zhe Zhou*1,2,3, Cong Li*1,3, Fan Yang4, Guangyu Sun†1,3

1School of Integrated Circuits, 2School of Computer Science, Peking University
3 Beijing Advanced Innovation Center for Integrated Circuits

4 School of Computer Science, Nankai University
{zhou.zhe, leesou, gsun}@pku.edu.cn, yangf@nbjl.nankai.edu.cn

Abstract—DIMM-based near-memory processing architec-
tures (DIMM-NMP) have received growing interest from both
academia and industry. They have the advantages of large mem-
ory capacity, low manufacturing cost, high flexibility, compatible
form factor, etc. However, inter-DIMM communication (IDC) has
become a critical obstacle for generic DIMM-NMP architectures
because it involves costly forwarding transactions through the
host CPU. Recent research has demonstrated that, for many
applications, the overhead induced by IDC may even offset the
performance and energy benefits of near-memory processing.

To tackle this problem, we propose DIMM-Link, which en-
ables high-performance IDC in DIMM-NMP architectures and
supports seamless integration with existing host memory systems.
It adopts bidirectional external data links to connect DIMMs, via
which point-to-point communication and inter-DIMM broadcast
are efficiently supported in a packet-routing way. We present
the full-stack design of DIMM-Link, including the hardware
architecture, interconnect protocol, system organization, routing
mechanisms, optimization strategies, etc. Comprehensive exper-
iments on typical data-intensive tasks demonstrate that the
DIMM-Link-equipped NMP system can achieve a 5.93× average
speedup over the 16-core CPU baseline. Compared to other IDC
methods, DIMM-Link outperforms MCN, AIM, and ABC-DIMM
by 2.42×, 1.87×, and 1.77×, respectively. More importantly,
DIMM-Link fully considers the implementation feasibility and
system integration constraints, which are critical for designing
NMP architectures based on modern DDR4/DDR5 DIMMs.

I. INTRODUCTION

DIMM (Dual-Inline Memory Module)-based Near-Memory
Processing architectures (DIMM-NMP) have been proposed
for many years to address the huge performance gap between
the CPU and main memory. By placing processing units near
DRAMs and offloading memory-intensive operations to the
NMP cores, we can harness the high aggregated memory
bandwidth and mitigate energy-consuming off-chip/package
data movement. In the big-data era, the increasing demands
for data-intensive workloads also accelerate the adoption of
DIMM-NMP architectures in scenarios like graph process-
ing [14], [77], genome analysis [11], [39], personalized rec-
ommendation [4], [44], [45], [52], [68], and machine learn-
ing [48], [58], [89], etc.

Compared to the HBM/HMC-based near-memory process-
ing counterparts [1], [28], [51], [88], [91], DIMM-NMP de-

* Co-first authors.
† Corresponding author.

0.0

1.0

2.0

3.0

4.0

1 4

1
6

6
4

2
5

6

1
K

4
K

1
6

K

6
4

K

2
5

6
K

1
M

4
M

0

200

400

600

800

1,000

1,200

1,400

1 2 4 8 16

Total NMP Bandwith

Total IDC Bandwidth

5
1
×

1.28TB/s

25.1GB/s

3.14GB/s

3.7MB/s

of DIMMsTransfer Length
(GB/s)

(a) Point-to-Point IDC Bw. (b) Total NMP Bw. VS. Total IDC Bw.

(GB/s)

Fig. 1. IDC Performance Exploration on the Real DIMM-NMP Platform1.

signs have larger memory capacity, lower manufacturing cost,
higher flexibility, and a compatible form factor for drop-
in replacement [5], [44]. Thus, they have the potential to
become commodity devices for massive deployment in data
centers. Consequently, UPMEM and Samsung have presented
commodity [32] and conceptional [49], [70] DIMM-NMP
products in recent years. Evaluations with real applications
demonstrate that DIMM-NMP can improve performance and
energy efficiency by several times [32], [70].

Though providing high intra-DIMM bandwidth, DIMM-
NMP cannot directly support inter-DIMM communica-
tion (IDC), which is, however, required by many data-intensive
tasks (e.g., for graph processing, a DIMM usually needs to ac-
cess the neighbor vertices stored in other DIMMs). Therefore,
many DIMM-NMP architectures only focus on IDC-free tasks
(e.g., personalized recommendations [44], [52], [68]). Other
generic approaches [3], [9], [32], [45] count on the host CPU
to forward inter-DIMM transactions. Specifically, to transfer
data among DIMMs, the host CPU has to load data from
the source DIMM to its cache hierarchy, then store it in the
destination DIMM via the narrow memory bus. To demonstrate
the inefficiency of such a method, we evaluate the IDC
performance on the commodity UPMEM [32] platform1. As
Figure 1 shows, the maximum point-to-point IDC bandwidth
is merely 3.14GB/s, which can only be achieved in bulk
data transfer. The 16-DIMM system provides 1.28TB/s NMP
bandwidth, but can only provide roughly 25GB/s P2P IDC
bandwidth (51× lower). Previous benchmarking [32], [76]
has also addressed that such a CPU-forwarding mechanism
suffers from low performance and weak scaling on many tasks
involving frequent data exchange. Therefore, IDC has become
a bottleneck for generic DIMM-NMP architectures.

1System configuration: 4 normal DDR4 DIMMs, 16 UPMEM DIMMs,
2048 DPUs@350MHz, 2× Xeon 4210R CPUs. SDK version: 2021.3.

978-1-6654-7652-2/23/$31.00 ©2023 IEEE 302

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
20

23
 IE

EE
 In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

H
ig

h-
Pe

rf
or

m
an

ce
 C

om
pu

te
r A

rc
hi

te
ct

ur
e

(H
PC

A
) |

 9
78

-1
-6

65
4-

76
52

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
H

PC
A

56
54

6.
20

23
.1

00
71

00
5

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

A few recent works have tried to tackle such an IDC
bottleneck. For instance, ABC-DIMM [76] leverages the
multi-drop bus structure to enable data-broadcast inside a
memory channel, which benefits some broadcast-dominant
applications. However, it cannot help many other broadcast-
unfriendly applications. Also, as it relies on the host to issue
customized broadcast commands, ABC-DIMM involves costly
modification to the host CPU hardware. Another work called
AIM [11] adds a dedicated bus to connect all DIMMs. Differ-
ent from ABC-DIMM, it allows the NMP cores to transfer data
on the dedicated bus without any host CPU assistance. Both
ABC-DIMM and AIM rely on the multi-drop bus structure,
which has two major limitations. First, as the NMP cores
have to compete for the shared bus, the point-to-point IDC
bandwidth cannot scale as the number of DIMMs increases.
Second, and more importantly, connecting many DIMMs (i.e.,
≥ 4 DIMMs) using a multi-drop bus is only practical in the
DDR2 and DDR3 eras [80]. For the high-frequency DDR4
and DDR5 DIMMs, the multi-drop bus structure is faced with
severe timing and signal integrity issues [15], [46]. Therefore,
the benefits of intra-channel broadcast are limited [76].

We argue that an ideal IDC mechanism for commodity
DIMM-NMP architectures should possess the following char-
acteristics. First, it should constrain the hardware innovations
within the DIMM module and avoid modifying the host CPU.

Second, it should provide both point-to-point and broadcast
communications to support generic near-memory processing
applications. Third, it should achieve flexible and scalable
IDC bandwidth as the number of DIMMs increases. Last, and
perhaps most important, the implementation feasibility and
integration constraints should be carefully considered to ensure
practicability for modern computing systems.

To fulfill these goals, we propose a novel interconnect
architecture for DIMM-NMP named DIMM-Link. Our main
idea is to connect adjacent DIMMs in a system with high-
speed external data links, via which both point-to-point com-
munication and broadcast are efficiently supported in a packet-
routing way. To this end, we present the full-stack design of
DIMM-Link: we propose a DIMM-Link Bridge (DL-Bridge)
to connect adjacent DIMMs with high-bandwidth SerDes links
physically. The DL-Bridge is driven by the DL-Controllers
that co-locate with the NMP cores. We design a packet-
based interconnect protocol to standardize the transmission.
Considering various system integration factors, we propose a
”DL Group” concept to organize the DIMMs in groups and a
hybrid routing mechanism to handle inter/intra-group packet
transmission. To improve the performance further, we also
introduce a polling proxy mechanism to mitigate the CPU-
polling overhead and a distance-aware task-mapping strategy
to improve the thread-data affinity. To summarize, we have
made the following main contributions:
• We deeply review existing methods for inter-DIMM com-

munication and analyze their limitations in respect of hard-
ware modification, supported IDC modes, effective band-
width, target applications, and practicability for modern
DDR4/DDR5 DIMMs. (Section II-B)

• To overcome the limitations, we propose DIMM-Link, a
novel interconnect solution to tackle the IDC bottleneck in
DIMM-NMP architectures. We present detailed designs of
hardware architecture, protocol stack, system organization,
routing mechanisms, etc. (Section III)

• Based on DIMM-Link, we propose two optimization strate-
gies to improve the IDC performance further, including a
polling-proxy mechanism and a distance-aware task map-
ping strategy. (Section IV)
Experiments on various NMP tasks demonstrate that

DIMM-Link achieves, on average, 5.93× higher performance
over the 16-core CPU baseline and outperforms MCN and
AIM by 2.42× and 1.87×, respectively. On broadcast-based
tasks, DIMM-Link is also 1.77× faster than ABC-DIMM.

II. BACKGROUND & MOTIVATION

In this section, we first briefly introduce different DIMM-
NMP architectures and their execution flows. Then, we deeply
review existing methods for inter-DIMM communication and
analyze their limitations.

A. DIMM-NMP Architectures & Execution Flows

According to the locations of NMP cores, we can classify
existing DIMM-NMP architectures into three main categories:
(1) Processing near banks [17], [18], [32], which is adopted
by the commodity UPMEM PIM-DIMM product [17]. (2)
Processing in separated buffer chips [5], [39], and (3) Pro-
cessing in a centralized buffer chip [3], [11], [44], [52], [76],
[90], which is also adopted by Samsung’s AxDIMM [49].
According to their execution flows, DIMM-NMP architectures
can be classified as coarse-grained [3], [5], [11], [32], [76], or
fine-grained [44], [49], [90] designs. With the coarse-grained
flow, the host CPU first writes data and kernels to NMP
DIMMs via the host memory controller (MC), after which
the host MC hands over the control of the DRAMs to local
MCs residing in DIMMs to execute the kernel. The host
cannot access DRAMs during the kernels’ execution to avoid
conflicts. For fine-grained execution flow, the host CPU must
send commands to drive the NMP core’s execution. In this
case, the NMP cores usually do not have complex local MCs,
and instructions should have deterministic timing. This paper
focuses on the more general centralized-buffer architecture
with a coarse-grained execution flow.

B. Analysis of the Existing IDC Methods

Although DIMM-NMP can provide high intra-DIMM band-
width, there is still a lack of an efficient inter-DIMM commu-
nication (IDC) mechanism, which is necessary for many data-
intensive applications. Currently, there are mainly three ways
to realize IDC in DIMM-NMP architectures, namely CPU-
forwarding, intra-channel broadcast, and dedicated bus. We
compare them in detail as follows:
CPU-Forwarding. MCN [3], UPMEM [32], and some other
architectures [9], [39] rely on the host CPU to forward data
among DIMMs. As shown in the second column of Table I,
if NMP cores in DIMM-3 want to read data in DIMM-0, it

303Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISONS OF INTER-DIMM COMMUNICATION METHODS.

IDC
Methods CPU-Forwarding [3], [32] Intra-Channel Broadcast [76] Dedicated Bus [11] DIMM-Link

Illustration
H

o
st

Memory Bus

DIMM0 DIMM1 DIMM2 DIMM3

LD 0x0a
ST 0x3a

0x0a 0x3a

LD STM
C

M
C H

o
st

 M
C

Memory Bus

DIMM0 DIMM1 DIMM2 DIMM3

0x0a 0x1a 0x2a 0x3aBC 0x0a

BC

Dedicated Bus

DIMM0 DIMM1 DIMM2

0x0a

BC ◊
0x3a

√◊

DIMM3

H
o

st
 M

C

H
o

st

DIMM-Link

DIMM0 DIMM1 DIMM2 DIMM3

0x0a 0x3a0x1a 0x2a

RRRR

M
C

M
C

Hardware
Modification DIMM Modules Host CPU, DIMM Modules DIMM Modules DIMM Modules

Supported
IDC Modes Point-to-Point Broadcast Point-to-Point Point-to-Point & Broadcast

Maximum
Bandwidth #Channel × β/2 #DIMM × β β #Link × β

Target NMP
Apps IDC-infrequent Applications Sparse Tensor Algebra Computational Genomics Generic Applications

writes the request to a local memory-mapped register. The host
CPU periodically polls all these registers in DIMMs to get the
IDC requests. After noticing DIMM-3’s request, the host CPU
reads the required data from DIMM-0 and writes it to DIMM-
3 via the memory channels. Since the data copy occupies the
channel twice, the theoretical bandwidth is #Channel×β/2,
where β denotes the bandwidth of each memory channel.

This method has three limitations: (1) Forwarding is expen-
sive, which involves the host CPU reading data into its cache
hierarchy and then writing it back to the destination. It not
only has considerable latency, but also affects the performance
of concurrently-running applications that share the memory
bandwidth [73]. (2) Since DIMMs share the memory channel
by time-division multiplexing, they have to compete for the
IDC bandwidth [76]. (3) The periodical CPU-polling occupies
the scarce host CPU and memory bus resources [3], [39], even
if no requests are issued. Therefore, in a real DIMM-NMP
system adopting CPU-forwarding [17], the in-efficient IDC
becomes the bottleneck of many applications [32].

Intra-Channel Broadcast. Instead of accelerating point-to-
point communication, ABC-DIMM [76] uses the multi-drop
bus to broadcast data inside a memory channel. As shown
in the third column of Table I, when DIMMs 1-3 in the
same channel all want to read the data at address 0x0a in
DIMM-0, the data is sent to all the DIMMs simultaneously
via a broadcast-read command issued by the host CPU.
In this case, the IDC bandwidth is 3× higher than point-to-
point transmission. However, ABC-DIMM has several limi-
tations: (1) modern server systems equipping DDR4/DDR5
DIMMs cannot support many DIMMs in each channel due to
signal integrity considerations [15]. As far as we know, the
maximum number of DDR4 DIMMs per channel is merely
three [37]. Therefore, the benefits of channel-wise broadcast
are limited [76]. The inter-channel broadcast still relies on
costly CPU-forwarding. (2) Many broadcast-unfriendly ap-
plications, such as BFS and K-means, cannot benefit from
such a paradigm. (3) It modifies the host CPU to support the
customized broadcast commands, significantly increasing the
manufacturing and deployment costs.

Dedicated Bus. AIM [11] adopts a dedicated bus to augment
the IDC capability. It connects all DIMMs with a dedicated
bus and allows them to communicate without the assistance
of host CPUs. An example is shown in the fourth column of
Table I. When DIMM-3 wants to read data from DIMM-0,
it broadcasts the commands via the dedicated bus. DIMM-
0 snoops on the request and puts the data on the bus ac-
cordingly for DIMM-3 to fetch. Such a method eliminates
the CPU-polling overhead since NMP cores control the data
transmission independently. However, as addressed before,
connecting all DIMMs with a multi-drop bus is extremely
challenging for DDR4/DDR5 due to the timing and signal
integrity issues [30], [53]. Moreover, such a design suffers
from unscalable IDC bandwidth since all NMP cores compete
for the shared bus [76]. Assume the bandwidth of the dedicated
bus is also β, then the per-DIMM bandwidth is mere β

#DIMM .
To summarize, although these methods have contributed

valuable ideas for inter-DIMM communication, they are faced
with at least one of the following challenges: (1) incurring
costly modification to the host system, (2) working for spe-
cific applications, (3) providing unscalable IDC bandwidth,
and (4) suffering from hardware implementation and system
integration constraints. To tackle these challenges and design
a potential commodity approach, we propose the DIMM-Link
interconnect, which is introduced in the following sections.

III. DIMM-LINK

We propose to revamp DIMM-NMP with the DIMM-Link
interconnect (the last column of Table I). DIMM-Link’s main
idea is to use external data links to connect adjacent DIMMs
and use packet-based routing to transfer data among DIMMs
flexibly. We overcome the challenges mentioned above and
fulfill various design goals. First, the hardware modifications
are constrained to DIMM modules to reduce deployment costs.
Second, DIMM-Link supports both point-to-point and broad-
cast IDC to accelerate generic applications. Third, since data
can be transmitted between adjacent DIMMs concurrently, the
maximum IDC bandwidth scales with the number of data
links. Last, implementation feasibility and system integration
constraints are carefully considered.

304Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Buffe
r

DL Ctrl

NMP Core

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Buffe
r

DL Ctrl

NMP Core

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Buffe
r

DL Ctrl

NMP Core

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Buffer

DL Ctrl

NMP Core

Host CPU

C/A
Bus

Data
Bus

DIMM
-Link Buffer Chip

DQ

Local MC

DDR PHY

NMP Cores

2 310

PHY & Arbiter

C/A DQ

DQ/CA Buffer

C/A

To local DRAM

To memory bus

To DL Bridge

…

DL Router

DL PHY

DL Buffer

NW Interface

DL Bridge

R R R R DL Controller

Network
Topology

CH0 CH1

Fig. 2. DIMM-Link Architecture.

A. Architecture Overview

As illustrated in Figure 2, the DIMM-Link hardware
consists of two main components: a DIMM-Link Bridge
(DL-Bridge ¶) and multiple DIMM-Link Controllers (DL-
Controller ·). The DL-Bridge physically connects multiple
DIMM modules via customized interfaces (the pins on the
upper edge of each DIMM module, including data pins and
power pins). Inside the DL-Bridge, there are bidirectional
SerDes links to transfer data signals between adjacent DIMMs.
In the centralized buffer chip of each DIMM, there is a
DL-Controller to drive the DL-Bridge and handle the packet
generation, routing and receiving, etc. As abstracted in ¸, N
DIMMs connected via DIMM-Link (N = 4 in the figure) form
a network topology containing 2×(N−1) unidirectional links.
Such a pluggable modular design facilitates the installation and
maintenance of DIMM modules. Details about the DL-Bridge
and DL-Controller are introduced as follows.
DL-Bridge. DL-Bridge is a specialized PCB board serving
as the medium of IDC. Full-duplex bidirectional SerDes links
are placed between the adjacent slots to transfer data signals.
DL-Bridge and the routers in the connected DIMMs form a
network that allows concurrent packet-based data transmission.
Physically, DL-Bridge can be implemented using mature off-
package SerDes links like GRS (Ground-Referenced Sig-
nalling) [69], which provides a high signal rate with low
energy consumption. Moreover, since we only connect the
adjacent DIMMs in a point-to-point way, the signal integrity
is easy to guarantee. DL-Bridge is driven by the power pins
of the DIMM-Link interface. Alternatively, we can use an
external power cable to drive the DL-Bridge if necessary.
DL-Controller. The DL-Bridge only contains the necessary
wires, slots, and transceiver logic to transfer signals. The
packet generation, routing, and receiving are all handled by
a DL-Controller residing in each DIMM’s buffer chip (· in
Figure 2). Apart from the physical interface (DL-PHY) to
interact with the DL-Bridge, there are three key components in
the DL-Controller: a DL-Router, an NW (Network)-Interface,
and a DL-Buffer. When DL-Controller is invoked by a local
request, the NW-Interface will packetize the request and put
it into the DL-Buffer. The DL-Routers are responsible for
routing these packets to the destination DIMM. A DL-Router
also determines whether a packet has arrived at its destination.
If so, the NW-Interface will decode the packet and feed the

Transaction Layer

(b) DL Packet Format(a) DIMM-Link Stack

DL PHY

DL Bridge

(TX) (RX)

Physical Layer

Function Layer

…

𝑁
Fl

it
s

ADDRSRC DST CMD

4b5b 5b 37b

TAG

8b

LEN

5b

DLL FieldCRC

32b 32b

Data Payload (128b)

Data Payload (128b)

Header (64b) Data Payload (64b)

…

Data Payload (64b) Tail (64b)

…

Data Link Layer

SynchronizationMem
Access

CPU-Forwarding
Request

Fig. 3. DIMM-Link Protocol.

data to the right place. DL-Controller cooperates with the
NMP cores, local memory controller, DL-Bridge, and host
CPU to complete various types of IDC transactions. More
details will be introduced in Section III-D.

B. DIMM-Link Protocol

Like some other packet-based interconnects [2], [22], [40],
[75], DIMM-Link also has a protocol to standardize the trans-
mission. Figure 3-(a) shows that the whole protocol stack is
composed of four hierarchical layers. The top Function Layer
defines all supported DIMM-Link functions, such as remote
memory access, synchronization, CPU-forwarding request (see
Section IV-A), etc. These functions are implemented via three
underlying layers: a Transaction Layer, a Data Link Layer, and
a Physical Layer. Details are described as follows.
Function Layer. The function layer defines a set of high-
level functions supported via DIMM-Link, which are called
DL functions. Here we briefly introduce two basic functions:
(1) Memory Access: When the NMP cores need to read

or write remote DRAMs, the inter-DIMM memory access
requests will be issued and transmitted to the destination
DIMMs automatically. Apart from point-to-point read/write,
DIMM-Link also supports broadcasting packets, which de-
mands explicit API calls in programs, to improve commu-
nication efficiency in broadcast-dominant applications [76].
(2) Synchronization: Parallel-computing applications widely

use synchronization primitives [12], [19], [20], [42], [43] to
synchronize the processing cores, and NMP workloads are no
exception. Previous HMC-based NMP accelerators adopt bar-
riers [1], [24], [88], [91] and locks [59] to synchronize among

305Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

Host CPU

Heat Sink

0 1 2345

DL Group 1DL Group 2

Mem
. B

us

Mem. ChannelsMem. Channels

Fig. 4. An Illustration of DIMM-Link Groups.

TABLE II
SERDES TECHNIQUES COMPARISON

Reference [10] [25] [69] (GRS)
Media SMA Cable Ribbon Cable PCB

Singal Rate 6Gb/s/pin 16Gb/s/pin 25Gb/s/pin
Reach 953mm 500mm 80mm

Energy Eff. (pJ/b) 0.58 2.58 1.17

NMP cores. The host CPU may also need to synchronize
with the NMP cores if it participates in the computation [9],
[76]. However, for existing DIMM-NMP architectures, syn-
chronization can only be implemented via inefficient host CPU
polling [32], [76] or by replicating the finite-state machines
(FSMs) of NMP accelerators and placing them in the host-
side controller [9]. DIMM-Link supports message-passing-
based synchronization and minimizes data traffic through
hierarchical synchronization (See Section III-D).
Transaction Layer. The transaction layer turns the DL func-
tions’ data into packets, whose format is defined in Figure 3-
(b). Each packet has a header and a tail, between which
are the optional data payloads. The whole packet is sliced
into one or more 128-bit flits. The 64-bit header contains
an SRC and a DST field to specify the unique IDs of both
source and destination DIMMs. For broadcast packets, the
DST field will be ignored, and any DIMMs can accept the
packet. The following 4-bit CMD field carries the command
of this transaction, which is given by the DL functions. The
ADDR information is required for address-based operations
such as memory access. We use 42 bits to address up to
4TB of memory. Considering that the destination ID bits have
already been used in the address mapping, we only store the
remaining 37 bits in the ADDR field for efficiency. A TAG field
uniquely identifies the request and response (optional) packets
of a transaction. Finally, we use a 5-bit LEN field to record
the number of flits in this packet. LEN=0 means there is only
one flit (e.g., packets for memory read requests have no data
payload). Each packet contains up to 32 flits, carrying 256
bytes of payload data.
Data Link Layer. The data link layer (DLL) provides reliable
transport of transaction packets from one DIMM to another.
As Figure 3-(b) shows, there is a CRC (Cyclic Redundancy
Check) field and a DLL field in the tail of each packet. When
the packet arrives at the destination DIMM, the CRC checker
in the router will detect data errors in the packet by validating
the 32-bit CRC. Then, the DLL field is used for retry control.
An ACK packet is sent back to the source if the CRC is correct.

(a) Intra-Group P2P Com.

(c) Intra-Group Broadcast

H
o

st
 C

P
U

0
1

3
2

(b) Inter-Group P2P Com.

(d) Inter-Group Broadcast

0

H
o

st
 C

P
U

1

3
2

0

H
o

st
 C

P
U

1

3
2

0

H
o

st
 C

P
U

1

3
2

Memory Bus Transmission DIMM-Link Transmission

0123

0123

01 32

01 32

Fig. 5. Four Inter-DIMM Communication Patterns.

The packets should be re-transmitted if the source DIMM does
not receive the ACK within a specified time. The DLL field
also contains credit bits to support flow control.
Physical Layer. The physical layer in Figure 3 contains digital
and analog circuits to support the serialization, transmission,
and deserialization of DL packets, namely the DL-PHY com-
ponent and the DL-Bridge in Figure 2. More details about the
physical layer are introduced in Section III-D.

C. DIMM-Link Group and Hybrid Routing

DIMM-Link Group. As Figure 4 shows, DIMMs are usually
distributed on both sides of the host CPU on the motherboard
of commodity servers [81]. While all DIMMs on the same
side of the CPU are connected by a DL-Bridge to form a
”DIMM-Link (DL) Group”, the DIMMs on different sides
are not directly connected. The reasons for this design are
explained as follows. First, the CPU heat sink makes it difficult
to connect DIMMs from two sides with a DL-Bridge directly.
Second, the distance between DIMMs on both sides is too long
to use high-bandwidth off-package serial links like GRS [69],
which has limited reach (about 80 mm). As compared in
Table II, though we can alternatively use some long-reach
SerDes techniques, the bandwidth and energy efficiency are
usually not comparable with GRS. Also, the SMA/Ribbon-
cable-based links have a much lower integration density than
the PCB-based GRS link [16], substantially increasing the
difficulty of hardware design.
Hybrid Routing. Under Figure 4’s organization, packets are
transmitted via DIMM-Link directly if DIMMs are in the same
group. For inter-group packets, they are still forwarded via the
host CPU. Therefore, a hybrid routing mechanism is required.
As illustrated in Figure 5, there are four different IDC types:
(a):Intra-Group P2P Communication. When both the source

and destination DIMMs are in the same group, the packets
will be routed via DIMM-Link only. For example, if DIMM-0
in Figure 5-(a) writes data to DIMM-2, the packets undergo a
two-hop routing (Steps ¶-·).
(b):Inter-Group P2P Communication. For point-to-point com-

munication, if the source and destination are in different
groups, the packets have to be forwarded by the host CPU.
In Figure 5-(b), if DIMM-0 wants to write data to DIMM-3,
the host CPU first gets the transmission requests via periodical

306Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

Router

DDR C/A

Address
Decoder

DDR Data

Local MC

Sy
n

c

Packet Buffer

Data Buffer

DL Buffer

Polling
Checker

Packetizer

De-packtizer
CRC

Network Interface

CPU polling

CPU loads packets

CPU stores packets

FWD
Ctrl.

RX TX

Mem requests

L/S FWD
packets

of FWD
requests

RRD/RD/WR

Polling Regs

CPU FWD

From remote

To remote

From local/remote

From Local

WD & CMD

1 0Address
Mapping

DQ C/A DL Controller

Target ID

Local ID

PAddr & Enabler

Local DDR
Interface

DL
Interface

PAddr

RRD

R
eo

rd
er

R
ea

d
R

ea
d

W
ri

te

RRDWD

WR/RD

RRD

D
IM

M
 0

D
IM

M
 1

N
M

P
 C

o
res

2
3

1
0

…

D
Q

/C
A

 B
u

ffer

DRAM

DRAM

DRAM

DRAM

Lo
cal M

C

C
H

0

H
o

st C
P

U

D
IM

M
 4

D
IM

M
 5

DIMM-Link Bridge

DDR Data

DDR C/A

N
M

P
 C

o
re

Local MCDL Ctrl.
R

D
L

C
o

n
tro

ller

Mem
Req

Sync

C
H

1

C
H

2
C

H
3 ……

=

Fig. 6. Detailed Architecture Design of DIMM-Link.

polling and then reads the data packet from DIMM-0 in
channel-0 (Step ¶). The packet is forwarded to channel-3 at
Step · and finally written to DIMM-3 at Step ¸.
(c):Intra-Group Broadcast. For inter-DIMM broadcast within

the same group, the packets are routed via DIMM-Link
until all the destination DIMMs have received the packet.
For example, broadcast data from DIMM-0 to the remaining
DIMMs in Figure 5-(c) requires three routing steps.
(d):Inter-Group Broadcast. An example of the inter-group

broadcast is shown in Figure 5-(d). It is completed in two
phases, which include inter-group P2P access (Steps ¶-·-¸)
and intra-group broadcast (Steps ¹-º). Both the host-CPU
forwarding and DIMM-Link transmission are involved.

Three issues should be addressed to realize an efficient
hybrid routing mechanism. First, the DL-Controller should
support data transmissions via both DIMM-Link and the
memory bus. Second, for inter-group IDC, the host CPU
forwarding still suffers from low bandwidth and long latency.
Periodical CPU polling is also inevitable. Third, in the same
group, the IDC latency increases with the routing hops. To
enable and optimize the hybrid routing, we carefully design
the architectures of the DL-Controller and Local Memory
Controller in Section III-D. We also propose two optimization
strategies to mitigate the CPU-forwarding and DIMM-Link
transmission overhead in Section IV.

D. Detailed Architecture Design

In this section, we dive into more detailed architecture
designs of DIMM-Link to show how the DL functions and
the hybrid routing mechanism are efficiently implemented. The
introduction is expanded around the support for two basic DL
functions: Memory Access and Inter-DIMM Synchronization.
Support for Memory Access. We customize the Local Mem-
ory Controller (Local MC) and the DL-Controller to imple-

ment the hybrid routing and make memory access application-
transparent. As Figure 6 illustrates, an NMP core’s memory
access request is first sent to the Local MC, which stores these
requests into a Transaction Buffer (¶). One request is read out
each time, whose address is decoded by the Address Mapping
module to get the target DIMM ID. An arbiter (·) checks
whether it is a local request. If so, the address, command
(Read or Write) and write data (WD) are sent to the Local
DDR Interface (¸) to access the local DRAM. Otherwise, they
are sent to the DL-Interface (¹), which feeds the memory
access requests to the DL-Controller. The Network Interface
(º) in the DL-Controller packetizes the remote memory access
request and checks the DL group of the destination DIMM
to choose the routing mode. According to the hybrid routing
mechanism, there are two conditions:

(a) Intra-Group Transmission: If the source and destination
DIMMs are in the same group, the Network Interface will
feed packets into the router to send them out through the DL-
Bridge. Once a packet arrives at the destination DIMM, its
Network Interface will check data errors, decode the packet,
and then put the memory access request into the Data Buffer
(»). The Local MC will be notified to read out the received
requests through the DL-Interface (¹). If the request is a Read
request (RD), then the Local DDR Interface (¸) will access
the DRAM and send the read-return-data (RRD) to the source
DIMM via the DL-Interface. If the request is a Write (WR)
request, the data will be written to the local DRAM directly.

(b) Inter-Group Transmission: If the source and destination
DIMMs are in different groups, the packets must be forwarded
via the host. To this end, the Network Interface (º) first in-
creases a counter recorded in the Polling Regs, which indicates
the number of waiting requests. The host CPU gets notified
of these requests by periodical polling. Specifically, the CPU

307Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

keeps reading a special address via the DDR interface. An
Address Decoder in the DL-Controller identifies such polling
signals and invokes the Polling Checker (¼), which returns
the number of waiting requests to the host. If any forwarding
(FWD) requests exist, the host will (1) fetch the packets from
the Packet Buffer (»). (2) Decode the destination DIMM ID
from these packets. (3) Store them to the Packet Buffer of
the destination DIMM (Also through reading/writing special
memory addresses). These operations are assisted by the FWD
Controller (½). Once the packets arrive at the destination
DIMM, they will be decoded and invoke the following op-
erations, just like an intra-group transmission. If the request is
a remote read, the RRD will be packetized and forwarded back
to the requesting DIMM. The concurrent RRD from both local
and remote DRAMs should be reordered (¾) before being fed
back to the NMP cores.
Support for Synchronization. As stated in Section III-B,
synchronization is usually necessary for DIMM-NMP archi-
tectures. Therefore, DIMM-Link supports message-passing
based synchronization and implements a hierarchical synchro-
nization [26], [31], [79] to reduce the communication traffic.
Specifically, in each DIMM, one of the NMP cores serves as
the master core, which coordinates the local synchronization.
In each DL group, we set a master DIMM. The master cores
in each DIMM send aggregated messages to the master DIMM
via DIMM-Link (¿ in Figure 6) to synchronize a DL group.
To reduce average hops, we heuristically select the DIMM at
the middle of each group as the master. Finally, the master
DIMMs in different DL groups coordinate with each other to
realize global synchronization. Compared to the centralized
synchronization methods, such a hierarchical synchronization
significantly reduces the total traffic. In addition, since the host
only needs to check the master DIMMs to synchronize the host
CPU and NMP-cores rather than scan all the DIMMs [32],
[76], the CPU-polling overhead is significantly mitigated.

E. Design Considerations

Virtual Address Translation. Since DIMM-Link uses physi-
cal addresses to read/write data, the NMP cores’ memory man-
agement strategies will not affect the design of DIMM-Link.
For simplicity, like many previous NMP architectures [1], [21],
[32], [44], we assume simple memory segmentation without
paging for the region of memory address space accessed by
NMP cores, which does not require complicated MMUs.
Data Consistency & Cache Coherence. As introduced in
Section II-A, a coarse-grained execution flow requires the
DIMM to go between two modes: Host Access (HA) mode
and NMP Access (NA) mode. Before and after the kernels’
execution, the DIMMs are in HA mode. Host CPU directly
accesses DRAM data. During the execution of kernels, the
DIMMs are in the NA mode. The DIMM-side memory con-
trollers handle both the local memory access and inter-DIMM
access. Although the host CPU needs to send DDR commands
to DIMMs for polling and packet forwarding, it only touches
data in the SRAM DL buffer and registers and thus does not
actually involve memory operations. Therefore, the host and

Baseline Polling

Polling Proxy

0 1 2 3

1

Mem Bus:

Mem Bus:

DIMM-Link:

Timeline

0→1 3→1

4 × Overhead

75% Polling Saved

1 ×

(b) Compare with baseline polling

H
o

st

(a) Illustration of Polling Proxy

X
CPU polls
DIMM-X X→Y

X sends FWD
requests to Y

FWD requests Proxy DIMM

0
1

R R R R

0 1 2 3

Fig. 7. The Polling Proxy Mechanism.

local MCs do not conflict with each other. Considering the
caches in the host CPU and NMP cores, maintaining data
coherency is also crucial. We adopt a software-assisted cache
coherence [27], [31], [82] to guarantee coherence among NMP
cores. Data can be either thread-private, shared read-only, or
shared read-write. Thread-private and shared read-only data
can be cached by NMP cores, while shared read-write data
is uncacheable. Therefore, DIMM-Link does not need to care
about the NMP caches since all the shareable data in DRAM
is always up to date. To maintain the consistency between
the host and NMP cores, the NMP data region is marked
uncacheable to the host CPU, which is a common practice in
previous works [1], [21], [32], [44]. When the kernels finish
execution, the NMP cores also flush their caches so that the
host CPU can fetch the results from DRAMs.

IV. OPTIMIZATIONS

A. The Polling Proxy Mechanism

Since the inter-group transmission still demands CPU-
forwarding, the host CPU has to keep polling all the DIMMs,
which occupies scarce host CPU and memory bus resources
even without any forwarding requests [39]. To mitigate this
problem, we propose a polling proxy mechanism. Specifically,
we select a DIMM in each group as the polling proxy. Other
DIMMs in the group send their forwarding requests to the
proxy DIMM via DIMM-Link. In this way, the host CPU
only needs to poll the proxy DIMM of each group to get the
requests. The synchronization master DIMM is recommended
as the polling proxy to reduce data traffic. As the example
in Figure 7-(a) shows, when both DIMM-0 and DIMM-3
need CPU-forwarding, they register the requests in the proxy
(DIMM-1) via DIMM-Link (Steps ¶ and ·). The host polls
DIMM-1 (Step ¸) and reads all the requests (Step ¹). After
that, the host will fetch the packets in DIMM-0 and DIMM-3,
respectively. Figure 7-(b) compares the baseline polling with
our polling proxy mechanism. After using the polling proxy,
the polling overhead is reduced by 75% in the four-DIMM
case. Here we assume the CPU uses a single thread for polling.
In practice, the CPU can poll multiple memory channels in
parallel, which however occupies more resources.

Prior works also proposed interrupt-based on-demand
polling mechanisms [3], [39]. Specifically, the DIMMs lever-
age an interrupt-like signal ALERT_N in the DDR4 stan-
dard to directly notify the host CPU of their forwarding

308Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

TABLE III
COMPARISONS OF POLLING MECHANISMS

Methods On-demand
Polling?

CPU-Polling
Range Overhead Latency

Baseline polling % All DIMMs

Baseline polling
+ Interrupt "

DIMMs in all
interrupting channels

Polling Proxy % One DIMM per group

Polling Proxy
+ Interrupt "

One DIMM per
interrupting group

requests. However, the interrupt-based methods may incur
frequent context switching, which introduces extra latency.
Moreover, since the DIMMs in a channel share the same
ALERT_N signal, the host still has to scan all the DIMMs
in the channel to find the requester DIMM. Fortunately, if we
combine the interrupt-based polling with the polling proxy,
the host only needs to check the proxy DIMM in each group
once interrupted. We compare different polling mechanisms
in Table III. Theoretically, combining the polling proxy with
interrupt-based polling brings the lowest overhead (measured
by the memory bus occupation). A quantitative analysis of
different polling mechanisms is presented in Section V-D.

B. Distance-Aware Task Mapping

To harness NMP architectures’ high parallelism, previous
works all adopt multi-threading/processing models [1], [3],
[32], [38], [66], [76], [91]. Ideally, a thread is co-located
with its frequently-accessed data to alleviate remote data
access. This is easy to achieve for some domain-specific NMP
accelerators [39], [44], [91] with fixed dataflow. TOM [38]
also proposes an automatic offloading/mapping mechanism to
improve the code-data affinity. However, they do not consider
the ”distance” between memories fully. For DIMM-Link, a
distance-aware task mapping strategy is necessary.
Distance-Aware Thread Placement. Figure 8 illustrates the
proposed distance-aware thread placement strategy. It is based
on a general observation that the computing phases in multi-
threading programs usually exhibit repeatable memory access
patterns [38], [60], [78]. Therefore, we can approximate the
optimal thread placement by analyzing a small fraction of the
memory traces. Specifically, we first randomly place T threads
to N DIMMs. Then the system enters a profiling phase. Each
DIMM runs the assigned threads and records the amount of
traffic to any DIMMs. The profiling period terminates after
pre-defined cycles (e.g., 1% of total cycles). Then, the host
CPU reads out and accumulates all the counters to generate
a table M[T][N], where M[i][j] denotes the total memory
access of thread i to DIMM j.

We propose an algorithm to derive the optimized thread
placement using the profiling results. The process is described
in Algorithm 1, which has three steps:
Step 1. For each thread i we estimate the cost of placing it to
any DIMM j. A cost table C[i][j] records the total memory
access counts weighted by the distance between DIMM j and
the other DIMMs (measured by a distance function dist(j, k)).
The heatmap (¶ in Figure 8) gives an example of the cost table

u Distance-aware
memory-access cost.

… …

(1,0)

(1,0)
(1,0)

(2,0)

(2,0)

(2,0)

(1,𝐶 𝑖 [𝑗])

S K

𝑇!

𝑇"

𝑇#

𝐷!

𝐷"

𝐷$

𝑇% 𝐷&
v Build the flow network

w The new thread placement

3. Get the new
placement

1. Random
placement

4. Thread
migration

2. Mem-access
profiling

Fig. 8. Distance-Aware Thread Placement.

Algorithm 1: Distance-Aware Thread Placement
1 Input: Number of Threads T; Number of DIMMs N; Maximum

threads per DIMM L; Profiled memory access table M;
2 Step 1: Estimate the distance-aware memory access cost:
3 . Initialize a cost table C[T][N] = {0};
4 for i← 0 until T do // Traverse all the threads
5 for j ← 0 until N do // Try to place thread i to DIMM j
6 for k ← 0 until N do // The cost of accessing DIMM k
7 C[i][j] = C[i][j]+dist(j, k) ∗M[i][k]; //Accum. cost

8 Step 2: Solve a minimum-cost maximum-flow problem:
9 . Create the flow network G:

10 1. Introduce a Source vertex and a Sink vertex;
11 2. View each thread as a vertex. Each DIMM is also a vertex;
12 3. Connect Source to each Thread. Each edge has capacity 1;
13 4. Connect Thread i to DIMM j, i ∈ {0, ...T− 1},

j ∈ {0, ...,N-1}. Edge e(i, j) has capacity 1 and cost C[i][j];
14 5. Connect DIMM to Sink. Each edge has capacity L, cost 0.
15 . Find the minimum-cost maximum-flow of graph G using

algorithms such as Bellman-Ford;
16 Step 3: For each flowed edge e(i, j), place thread i to DIMM j.

C[T][N]. Since each thread can be placed in any DIMM,
it is costly to derive the optimal placement (with minimal
total cost) using brute-force search algorithms. Instead, we can
convert this problem to a classic minimum-cost maximum-flow
problem [23], [35], [64] and solve it in polynomial time.
Step 2. As illustrated in Figure 8 (·), we build a flow network
based on the cost table. We view each thread and DIMM as a
vertex. All Thread vertexes (T) are connected to a Source
vertex (S). Each edge has capacity 1 and cost 0 (denoted as (1,
0)). All DIMM vertexes (D) are connected to a Sink vertex
(K). Each edge has a capacity L, which denotes the maximum
threads per DIMM. In this example, L is 2. And the cost is
also set to 0. The Thread and DIMM vertexes are connected
as a bipartite graph. The edge between thread i and DIMM
j has capacity 1 and cost C[i][j]. With the flow network
G, we can calculate the minimum-cost maximum-flow using
algorithms like Bellman-Ford [23]. The time complexity is
merely O(T2N2), where T and N are the numbers of thread
and DIMMs, respectively. It only takes about 2 ms on an AMD
5950X CPU to place 64 threads on 16 DIMMs.
Step 3. After calculating the maximum flow, the selected edges
of the bipartite graph indicate the optimized thread placement.
For example, if the edge connecting T7 and D0 is selected (the
red edge), then Thread-7 should be placed to DIMM-0.

309Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

MIG

DL Controller GTH PHYLocal MC

Cortex A53
(NMP Cores)

ARM (PS) Fabric (PL)

AXI-Bridge

DDR PHY

Router
Interface

SFP
Connector

Dumped
Memory Trace

DDR4

SFP

Fig. 9. The FPGA Prototype.

Finally, the threads are migrated to target DIMMs according
to the derived thread placement. The migration overhead is
negligible since the same program binaries have already been
loaded into the NMP cores, and we only have to modify the
input arguments to let them compute on new data and then
restart the computing. The DIMM-side and host-side runtimes
cooperate to handle such a migration.

V. EVALUATION

To comprehensively evaluate DIMM-Link, we first demon-
strate an FPGA-based prototype to validate its function. Then,
we evaluate DIMM-Link’s performance against three IDC
baselines through simulation.

A. Conceptional FPGA Prototype

As presented in Figure 9, we implement a DIMM-Link
prototype using multiple Xilinx ZCU-102 FPGAs. The PS-
side ARM processors serve as the NMP cores. At the PL-side
(Progarmmable Logic), we implement the DL-Controller and
Local MC (based on the Xilinx MIG IP). The PL’s DDR4
memory serves as the local memory, which can be accessed
via the Local MC. We implement the network interface and
a router to transmit DL packets through the GTH transceiver
(adjacent FPGAs are connected via the SFP connectors). We
use pre-dumped traces to drive the system. The ARM proces-
sor translates the memory traces to Read/Write requests
and feeds them to the PL side. Due to the lack of a host CPU
in such a system, we only validate intra-group operations.
Resource Utilization. We implement the hardware logic using
Vitis HLS and Verilog HDL and synthesize the design with
Vivado 2021.2. On each ZCU-102 FPGA board, our design
only consumes 5.51% LUT, 6.23% FF, and 2.74% BRAM
resources. Since the buffer chip of a DIMM can have 100 mm2

of area [61], we believe that adding the customized logic in
buffer chips only incurs negligible area (and power) overhead.
Performance & Analysis. Running at 100MHz, the FPGA
prototype takes about 1.2 µs to packetize a memory write
request. The CRC module contributes to most of the latency
due to the inefficient implementation using the HLS-based
IP [67]. Without CRC, the packet generation/decoding can
finish in 18 cycles. Such a prototype partially validates the
feasibility of DIMM-Link’s architectures. The performance

TABLE IV
BENCHMARKING APPLICATIONS

Name Abbr. Name Abbr.
Breadth-First Search BFS Needleman-Wunsch NW

Hotspot HS PageRank PR

K-Means KM Single Source Shortest Path SSSP

TABLE V
SYSTEM PARAMETERS AND CONFIGURATIONS

Host CPU / CPU Baseline
Processor 16-core @ 3.2GHz

L1I / L1D / L2 / L3 32KB,4 / 32KB,8 / 256KB,16 / 8MB,16
NMP Cores

Processor 4-core @ 2.0GHz
L1I / L1D / L2 16KB,4 / 16KB,4 / 128KB,16

DIMM-Link Parameters
25Gb/s/Lane, 1.17 pJ/b, 8 × Lanes (25GB/s per Link)

Memory System
DDR4-2400, 4Gb x72, 2 ranks/DIMM, FR-FCFS

Address Mapping: Row-Bankgroup-Bank-DIMM-Column

DRAM Timing Parameters
tRC=56, tRCD=17, tCL=17, tRP=17, tBL=4

tCCD S=4, tCCD L=6,tRRD S=4, tRRD L=6, tFAW=26

will be significantly improved if DIMM-Link is implemented
in ASIC and adopts the GRS [69] link. In the next section,
we perform a simulation-based evaluation to facilitate the
comparison with other IDC methods.

B. Evaluation Methodology

Baselines. We compare DIMM-Link with three baseline IDC
methods: MCN [3] (similar to UPMEM [32]), which relies on
CPU forwarding. AIM [11], which adopts a dedicated memory
bus and ABC-DIMM [76] which broadcasts data within each
memory channel. MCN and AIM are mainly used for com-
paring the point-to-point communication performance, while
ABC-DIMM is used to compare the broadcast performance.
Benchmarks. Table IV lists the benchmarking tasks. Fol-
lowing previous NMP works [5], [21], [32], [87], we im-
plement four typical memory-intensive tasks: Breadth-First
Search (BFS), Hotspot (HS), K-Means (KM), and Needleman-
Wunsch (NW). We also implement the Pagerank (PR) and
Single Source Shortest Path (SSSP) tasks used in ABC-
DIMM [76], with the Livejournal [74] graph as the input.
We choose these workloads not only because they have been
widely used for evaluating previous NMP architectures, but
also because they all involve frequent IDC operations, which
can fully reveal the IDC performance of DIMM-Link and the
baselines. All programs are parallelized using OpenMP.
Simulation. We modify the MultiPIM [86] simulator devel-
oped on Zsim [71], Ramulator [50], and BookSim [41], to sim-
ulate DIMM-Link and the baseline architectures. Considering
that MultiPIM cannot directly simulate the host CPU polling
and forwarding, we also view the host CPU as a routing node
that takes certain cycles to forward a packet. The fixed CPU
forwarding latency is profiled additionally via GEM5 [6].
Configuration. Table V summarizes the system configura-
tions. We set a 16-core OoO CPU as the host CPU baseline.

310Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

0.0

0.2

0.4

0.6

1.0

0.8

4D-2C 8D-4C 12D-6C 16D-8C

0

2

4

6

8

10

12

BFS HS KM NW PR SSSP BFS HS KM NW PR SSSP BFS HS KM NW PR SSSP BFS HS KM NW PR SSSP

MCN AIM DL-Link DL-Link-opt

ID
C

 R
atio

系列1

Sp
ee

d
u

p
 O

ve
r

H
o

st Non-overlapped IDC Ratio

0.0

0.2

0.4

0.6

1.0

0.8

4D-2C 8D-4C 12D-6C 16D-8C

0

2

4

6

8

10

12

BFS HS KM NW PR SSSP BFS HS KM NW PR SSSP BFS HS KM NW PR SSSP BFS HS KM NW PR SSSP

MCN AIM DL-Link DL-Link-opt
ID

C
 R

atio
系列1

Sp
ee

d
u

p
 O

ve
r

H
o

st
Non-overlapped IDC Ratio

Fig. 10. Performance and Non-overlapped IDC Ratio Comparisons.

0

0.2

0.4

0.6

0.8

1

B
FS H

S
K

M
N

W P
R

SS
SP B
FS H

S
K

M
N

W P
R

SS
SP B
FS H

S
K

M
N

W P
R

SS
SP B
FS H

S
K

M
N

W P
R

SS
SP

Intra DIMM Inter DIMM Inter Group

4D-2C 8D-4C 12D-6C 16D-8C

0

0.2

0.4

0.6

0.8

1

B
FS H

S
K

M
N

W P
R

SS
SP B
FS H

S
K

M
N

W P
R

SS
SP B
FS H

S
K

M
N

W P
R

SS
SP B
FS H

S
K

M
N

W P
R

SS
SP

Intra DIMM Inter DIMM Inter Group

4D-2C 8D-4C 12D-6C 16D-8C

Fig. 11. Data Transfer Breakdown of DL-Link-opt.

For DIMM-NMP systems, we equip four general-purpose
cores in each DIMM, which share a 128 KB L2 cache. Similar
to prior works [44], [68], the NMP cores can access local
ranks in parallel. Thus, the aggregated memory bandwidth
is proportional to the total number of ranks. We set the
DRAM timing parameters according to Micron’s LR-DIMM
datasheet [62]. We adopt the parameters of GRS [69] to con-
figure the DIMM-Link interconnects. The default bandwidth is
25GB/s per bidirectional link. We profile the first 1% of total
memory access for the distance-aware task mapping (similar to
TOM’s configurations [38]). The distance function dist(j,k) in
Algorithm 1 is derived from profiling the latency between each
pair of DIMMs. We ignore the negligible thread migration
overhead, because we simply restart the computing (with new
thread indices) after migration rather than checkpoint-restore
all the temporal data. For the dedicated bus of AIM, we assume
it has the same bandwidth as the memory bus.

C. Performance and Energy Consumption

P2P IDC Performance. We first compare DIMM-Link’s
performance against MCN and AIM on P2P IDC tasks.
We set four system configurations, namely 4D-2C (denotes
four DIMMs and two channels), 8D-4C, 12D-6C, and 16D-
8C. Except for the 4D-2C configuration, which has one DL
group, the other configurations have two DL groups. For
all configurations, we ensure that each DIMM runs four
threads. We adopt the polling proxy strategy (Table III) on
DIMM-Link and use the baseline polling for MCN. We set
DIMM-Link configurations both with (DIMM-Link-opt)
and without (DIMM-Link-base) the distance-aware task
mapping optimization. As Figure 10 shows, we plot the
speedup over the 16-Core host CPU as bar graphs and use
line graphs to illustrate the ratio of non-overlapped IDC cycles.
DIMM-Link-opt achieves 5.93× geomean speedup over the
CPU baseline (including the profiling time, which takes up
2% to 9%, according to the number of DIMMs). Compared to
MCN, AIM and DIMM-Link-base, it also achieves 2.42×,
1.87× and 1.12× higher geo-mean performance, respectively.

0

2

4

6

PR SSSP SPMV PR SSSP SPMV PR SSSP SPMV

MCN-BC AIM-BC ABC-DIMM DIMM-Link
4D-4C (1DPC) 8D-4C (2DPC) 12D-4C (3DPC)

N
o

rm
. S

p
ee

d
u

p

0

2

4

6

PR SSSP SPMV PR SSSP SPMV PR SSSP SPMV

MCN-BC AIM-BC ABC-DIMM DIMM-Link

4D-4C (1DPC) 8D-4C (2DPC) 12D-4C (3DPC)

N
o

rm
. S

p
ee

d
u

p

Fig. 12. Broadcast Performance Comparison.

Among all the tasks, PR and KM show strong scaling with
the help of DIMM-Link. NW achieves the highest performance
with four DIMMs, while BFS, HS, and SSSP prefer the
8D-4C configuration. On the one hand, the memory access
patterns of different tasks affect their scalability. On the other
hand, we infer that as the number of DIMMs in each group
increases, the diameter (denotes the maximum hops between
two DIMMs) of the DIMM-Link network also becomes larger,
which may degrade DIMM-Link’s performance due to the
higher latency and congestion rate. We discuss this problem in
Section VI. DIMM-Link reduces 55.8% of the non-overlapped
IDC cycles compared to the MCN baseline, which is the
key source of performance improvement. With the thread
placement optimization, DIMM-Link-opt further reduces
48.5% (4D-2C) to 53.6% (16D-8C) of non-overlapped IDC
cycles and contributes up to 1.21× end-to-end speedup (16D-
8C) over the DIMM-Link-base systems.

The performance of MCN improves as more memory chan-
nels are equipped, which is in line with the statement [3].
However, eight channels almost reach the physical limitations
due to the CPU pin count constraint. DIMM-Link’s packet
routing is more efficient than MCN’s CPU-forwarding. Al-
though DIMM-Link also demands CPU-forwarding for inter-
group IDC, with the thread-placement optimization, only 29%
of total traffic has to be forwarded via CPU according to our
profiling (The data transfer breakdown of DIMM-Link-opt
is shown in Fig. 11). In addition, we find that AIM outperforms
MCN in most cases due to the avoidance of CPU-forwarding.
However, AIM’s performance decreases as more DIMMs are
connected due to its unscalable IDC bandwidth.
Broadcast Performance. To evaluate the broadcast perfor-
mance, we implement three typical applications (PR, SSSP and
SPMV) in a broadcast manner following ABC-DIMM’s set-
tings. Besides ABC-DIMM, we also set MCN-BC and AIM-
BC, which enable broadcast in MCN and AIM as the baselines.
As Figure 12 shows, for the practical 2DPC (DIMMs-per-
Channel) and 3DPC systems, ABC-DIMM’s speedup over
MCN-BC is not significant. This is in line with their re-

311Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

0

0.5

1

1 2 3 4 5 6

NME Energy DRAM Energy IDC Energy

BFS HS KM NW PR SSSPN
o

rm
. E

n
er

gy

0.0
0.2
0.4
0.6

1.0
0.8

4
5

%

4
1

%

5
3

%

4
2

%

4
4

%

3
4

%

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

NME Energy DRAM Energy IDC Energy

BFS HS KM NW PR SSSP

N
o

rm
. E

n
er

gy

0.0

0.2

0.4

0.6

1.0

0.8

4
5

%

4
1

%

5
3

%

4
2

%

4
4

%

3
4

%

Fig. 13. Energy Consumption Breakdown.

0

2

4

6

8

100 200 500 1K 2K 5K 10K

MCN AIM DIMM-Link Central DIMM-Link Hier

(a) Speedup with different sync intervals (b) Speedup on TS.Pow

N
o

rm
. S

p
ee

d
u

p
16D-8C

0.5

1.0

1.5

2.0

8D-4C 12D-6C 16D-8C

0

2

4

6

8

100 200 500 1K 2K 5K 10K

MCN AIM DIMM-Link Central DIMM-Link Hier

(a) Speedup with different sync intervals (b) Speedup on TS.Pow

N
o

rm
. S

p
ee

d
u

p

16D-8C

0.5

1.0

1.5

2.0

8D-4C 12D-6C 16D-8C

Fig. 14. Synchronization Performance.

sults [76]. Compared to MCN-BC and ABC-DIMM, DIMM-
Link achieves 2.58× and 1.77× geomean speedup, respec-
tively. DIMM-Link breaks the DPC limitation of ABC-DIMM
by connecting more DIMMs together, which greatly improves
broadcast efficiency and mitigates the overhead of CPU-
forwarding. We can see that AIM-BC outperforms DIMM-
Link under all settings as we assume AIM can broadcast data
to all DIMMs via the dedicated bus, without any routing or
CPU forwarding. However, as pointed out before, connecting
many DIMMs with a multi-drop bus is impractical for modern
DDR4/DDR5 DIMMs. Our DIMM-Link architecture perfectly
balances the performance and implementation feasibility.
Energy Efficiency. Figure 13 compares the energy consump-
tion of different IDC methods. The power of DIMM-Link is
set to 1.17pJ/b according to GRS [69]. We follow a prior
work [44] and set the DDR Activate energy to 2.1 nJ. Each
DDR RD/WR operation consumes 14pJ/b. The off-chip IO via
memory bus consumes 22pJ/b. The power of a four-core NMP
processor is estimated as 1.8W according to MCN [3]. We
estimate the CPU forwarding energy by profiling each polling
and forwarding operation with GEM5 [6] and McPAT [55].
We assume that AIM consumes the same energy per bit as the
memory bus [11]. As we can see, on the 16D-8C configuration,
DIMM-Link reduces 1.76× energy consumption compared to
MCN (on average), most of which comes from the reduced
IDC energy. AIM consumes the lowest IDC energy since it
directly connects all DIMMs with a bus and does not involve
the energy-consuming CPU forwarding. However, such an
architecture ignores the crucial signal integrity challenge and
system integration constraints. Still, DIMM-Link achieves
1.07× energy saving compared to AIM, thanks to the end-
to-end performance improvement presented before.

D. Sensitivity Analysis

Synchronization. The workloads in Table IV do not in-
volve frequent synchronization. Therefore, to fully demon-
strate DIMM-Link’s ability to accelerate synchronization,
we follow SynCron’s [31] practice and evaluate the per-

0.8

0.9

1.0

1.1

1.2

BFS HS KM NW PR SSSP

Base Base+Itrpt P-P P-P+Itrpt

N
o

rm
. P

er
f. 16D-8C

322.1

5.0

0.2

0 10 20 30

(b) Bus Occupation
%

(a) End-to-End Performance

0.8

0.9

1.0

1.1

1.2

BFS HS KM NW PR SSSP

Base Base+Itrpt P-P P-P+Itrpt

N
o

rm
. P

er
f. 16D-8C

32
2.1

5.0

0.2

0 10 20 30

(b) Bus Occupation

%

(a) End-to-End Performance
Fig. 15. Performance with Different Polling Methods.

1.0

2.0

3.0

4.0

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

BFS HS KM NW PR SSSP

N
o

rm
. S

p
e

e
d

u
p

DIMM-Link Bandwidth (GB/s)

4D-2C 8D-4C 16D-8C

1.0

2.0

3.0

4.0

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

BFS HS KM NW PR SSSP

N
o

rm
. S

p
ee

d
u

p

DIMM-Link Bandwidth (GB/s)

4D-2C 8D-4C 16D-8C

Fig. 16. DIMM-Link Bandwidth Exploration

formance with variable synchronization frequencies. Ex-
cept for the hierarchical synchronization with DIMM-Link
(DIMM-Link-Hier), the other three baselines, namely
MCN, AIM, and DIMM-Link-Central, all choose a cen-
tralized NMP core as the master. As Figure 14-(a) shows, when
the synchronization interval narrows, DIMM-Link-Hier
achieves considerable speedup over the baselines. For an
interval of 500 instructions, DIMM-Link-Hier outperforms
MCN and AIM by 5.3× and 2.2×, respectively. We also
adopt the representative TS.Pow task used by SynCron [31]
to evaluate the end-to-end performance. As shown in Fig-
ure 14-(b), DIMM-Link-Hier is 1.46× to 1.74× faster
than MCN. Therefore, DIMM-Link can effectively accelerate
synchronization-rich tasks through the flexible packet-based
IDC and the hierarchical synchronization mechanism.
Polling Strategies. To prove the advantages of the proposed
polling proxy strategy, we compare the end-to-end perfor-
mance and memory bus occupation against the baselines listed
in Table III. Evaluations are under the 16D-8C configuration.
As Figure 15-(b) shows, the baseline polling (Base) has the
highest bus occupation (32%) due to the costly per-DIMM
scanning. With interruption, the bus occupation greatly reduces
since the host CPU only scans the interrupting channels. Our
polling proxy (P-P) achieves comparable low bus occupation
with Base+Itrpt since the host CPU only polls the proxy
DIMM in each group. With interruption (P-P+Itrpt), the
memory bus occupation is further reduced to merely 0.2%.

As shown in Figure 15-(a), the Base+Itrpt solution has
better end-to-end performance than the non-interrupt coun-
terpart, mainly due to the reduced memory bus occupation.
However, since the interrupt-based methods need to invoke the
host-side interrupt-handling process to scan the channels, its
forwarding latency is higher than that of the polling proxy.
Therefore, the polling proxy achieves the highest end-to-
end performance. Considering that the ALERT_N signal of
DDR4 is usually used for other purposes such as parity error
detection [63], using the polling proxy avoids modifying the
host system to support such an interruption mechanism.

312Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

Half Ring Ring Mesh Torus
To

p
o

lo
gy

R
o

u
ti

n
g

0.8

1

1.2

1.4

1.6

BFS HS KM NW PR SSSP

Half-Ring Ring Mesh Torus

Sp
e

ed
u

p

16D-8C

Fig. 17. Exploration of Other Topologies.

The Bandwidth of DIMM-Link. Finally, we explore DIMM-
Link’s performance under different bandwidth settings from
4GB/s to 64GB/s. As shown in Figure 16, from 4D-2C to
16D-8C, the benefits of increasing the bandwidth become more
significant. Under the 16D-8C configuration, the performance
improves almost linearly on HS and BFS tasks. This phe-
nomenon supports our inference that a large network diameter
may result in longer latency and higher congestion rate and
constrain the overall performance. We consider reducing the
diameter of DIMM-Link for potentially better performance,
which is discussed in the next section.

VI. DISCUSSION AND FUTURE WORK

Adopting Other Topologies. Giving priority to the imple-
mentation feasibility, in this paper our DIMM-Link prototype
only connects the adjacent DIMMs with bidirectional data
links to form a Half-Ring topology. However, as the number
of DIMMs increases, the diameter of DIMM-Link becomes
larger, which may degrade DIMM-Link’s performance due to
the higher latency and congestion rate. Therefore, we also
explore some other topologies listed in Figure 17. DIMMs
within a DL group are connected as Ring, Mesh, or Torus.
Their performances in a 16D-8C system are also shown in
the figure. Compared to the baseline topology, on average, the
Ring, Mesh, and Torus topologies can accelerate the P2P IDC
performance by 1.11×, 1.19× and 1.27×, respectively.

However, implementing the Ring topology in DIMM-Link
demands a long-reach interconnect (Table II). The more com-
plex Mesh and Torus topologies not only require the network
interface in DL-Controllers to provide more ports for connec-
tion but also significantly increase the placement&routing and
signal integrity challenges. The performance/overhead trade-
off needs more in-depth evaluations. The linear organization
is the most practical design and can already outperform the
baseline methods on the evaluated workloads.
DIMM-Link on Disaggregated Memory. We argue that
DIMM-Link’s application is not restricted to traditional mem-
ory organizations. In recent years, disaggregated memory [7],
[34], [56] has become a practical solution to break the memory
capacity limitation of a single server. It organizes DIMMs
as memory blades connected to the host CPU via PCIe,
CXL, or Ethernet. If a memory blade equips DIMM-NMPs,
DIMM-Link can be used to augment the local IDC capability.

Existing protocols like RDMA or CXL can still realize inter-
blade communication. However, it requires support from the
software stack and programming model aspects.
Adapt DIMM-Link to Other Architectures. In this paper,
we adopt the most popular centralized buffer-chip architecture
to demonstrate how to integrate DIMM-Link into a DIMM-
NMP architecture. For other DIMM-NMP architectures based
on separate buffer chips [5] or using near-bank processing [32],
the DL-Controller should be implemented as a standalone
module. The distributed NMP cores in a DIMM should have
data paths to the centralized DL-Controller to send and receive
memory access requests.

VII. RELATED WORK

Many near-memory processing accelerators using 3D/2.5D-
stacked memories have been proposed for graph process-
ing [1], [13], [65], [88], [91], DNN acceleration [29], [36],
[47], [51], [54], [57], [72], [83], [85], or general-purpose appli-
cations [21], [26], [33], [38], [84], [87]. Other NMP architec-
tures are DIMM-based: NDA [21] stacks the computation units
atop DRAM chips of DIMMs. Chameleon [5] puts CGRA
cores to the separated buffer chips of DDR4 LR-DIMMs.
TensorDIMM [52], RecNMP [44], TRiM [68] and FAFNIR [4]
accelerate recommendation systems with near-memory tensor
reduction. ENMC [58] and StepStone [8] focus on sparse
tensor algebra in deep-learning applications. Medal [39] de-
signs a DIMM-NMP accelerator to accelerate DNA seeding.
GNNear [90] proposes a hybrid architecture combing both
DIMM-based NMP and centralized acceleration engine for
efficient full-batch GNN training. However, DIMM-NMP ar-
chitectures lack an effective IDC mechanism which limits
its application in many general-purpose applications [32].
Though ABC-DIMM [76] and AIM [11] also propose to
optimize IDC, they fail to fully consider implementation and
system integration challenges. Our DIMM-Link presents a
full-stack design to enhance the inter-DIMM communication
performance for generic DIMM-NMP architectures.

VIII. CONCLUSION

This paper proposes the DIMM-Link interconnect to enable
efficient inter-DIMM communication (IDC) in DIMM-NMP
architectures. We present the full-stack design of DIMM-Link
including the hardware architecture, interconnect protocol,
system organization and routing mechanisms, etc. We also
propose two optimization strategies to further enhance DIMM-
Link’s performance. Compared to three baseline IDC methods,
DIMM-Link shows 2.42× and 1.87× higher performance
than MCN and AIM, respectively. On broadcast-based tasks,
DIMM-Link is also 1.77× faster than ABC-DIMM.

ACKNOWLEDGMENT

We thank all reviewers of MICRO-2022 and HPCA-2023
for their valuable comments. We are particularly grateful
to Ruifan Xu for his help about the thread-placement al-
gorithm. This work is supported by NSF China (Grant
No. 61832020, 62032001, 92064006), Beijing Academy of
Artificial Intelligence (BAAI), and 111 Project (B18001).

313Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
2015, pp. 105–117.

[2] J. Ajanovic, “Pci express*(pcie*) 3.0 accelerator features,” Intel Corpo-
ration, vol. 10, pp. 2–2, 2008.

[3] M. Alian, S. Min, H. Asgharimoghaddam, A. Dhar, D. K. Wang,
T. Roewer, A. J. McPadden, O. O’Halloran, D. Chen, J. Xiong, D. Kim,
W. W. Hwu, and N. S. Kim, “Application-transparent near-memory
processing architecture with memory channel network,” in 51st Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
2018, Fukuoka, Japan, October 20-24, 2018, 2018, pp. 802–814.
[Online]. Available: https://doi.org/10.1109/MICRO.2018.00070

[4] B. Asgari, R. Hadidi, J. Cao, D. E. Shim, S. K. Lim, and H. Kim,
“FAFNIR: accelerating sparse gathering by using efficient near-memory
intelligent reduction,” in IEEE International Symposium on High-
Performance Computer Architecture, HPCA 2021, Seoul, South Korea,
February 27 - March 3, 2021. IEEE, 2021, pp. 908–920. [Online].
Available: https://doi.org/10.1109/HPCA51647.2021.00080

[5] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and practical near-dram acceleration architecture
for large memory systems,” in 2016 49th annual IEEE/ACM interna-
tional symposium on Microarchitecture (MICRO). IEEE, 2016, pp.
1–13.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[7] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu,
and A. Kolli, “Rethinking software runtimes for disaggregated
memory,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 79–92. [Online]. Available:
https://doi.org/10.1145/3445814.3446713

[8] B. Y. Cho, J. Jung, and M. Erez, “Accelerating bandwidth-bound deep
learning inference with main-memory accelerators,” in Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Analysis, 2021, pp. 1–14.

[9] B. Y. Cho, Y. Kwon, S. Lym, and M. Erez, “Near data acceleration with
concurrent host access,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 818–
831.

[10] W. Choi, G. Shu, M. Talegaonkar, Y. Liu, D. Wei, L. Benini, and P. K.
Hanumolu, “3.8 A 0.45-to-0.7v 1-to-6gb/s 0.29-to-0.58pj/b source-
synchronous transceiver using automatic phase calibration in 65nm
CMOS,” in 2015 IEEE International Solid-State Circuits Conference,
ISSCC 2015, Digest of Technical Papers, San Francisco, CA, USA,
February 22-26, 2015. IEEE, 2015, pp. 1–3. [Online]. Available:
https://doi.org/10.1109/ISSCC.2015.7062928

[11] J. Cong, Z. Fang, M. Gill, F. Javadi, and G. Reinman, “AIM:
accelerating computational genomics through scalable and noninvasive
accelerator-interposed memory,” in Proceedings of the International
Symposium on Memory Systems, MEMSYS 2017, Alexandria, VA, USA,
October 02 - 05, 2017. ACM, 2017, pp. 3–14. [Online]. Available:
https://doi.org/10.1145/3132402.3132406

[12] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[13] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie,
and H. Yang, “Graphh: A processing-in-memory architecture for large-
scale graph processing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 38, no. 4, pp. 640–653, 2018.

[14] G. Dai, Z. Zhu, T. Fu, C. Wei, B. Wang, X. Li, Y. Xie, H. Yang, and
Y. Wang, “Dimmining: pruning-efficient and parallel graph mining on
near-memory-computing,” in Proceedings of the 49th Annual Interna-
tional Symposium on Computer Architecture, 2022, pp. 130–145.

[15] B. Dannan, “Signal integrity characterization of via stubs on high-speed
ddr4 channels,” https://www.signalintegrityjournal.com/articles/1731-
signal-integrity-characterization-of-via-stubs-on-high-speed-ddr4-
channels.

[16] A. Deutsch, “Electrical characteristics of interconnections for high-
performance systems,” Proceedings of the IEEE, vol. 86, no. 2, pp.
315–357, 1998.

[17] F. Devaux, “The true processing in memory accelerator,” in 2019 IEEE
Hot Chips 31 Symposium (HCS). IEEE Computer Society, 2019, pp.
1–24.

[18] A. Devic, S. B. Rai, A. Sivasubramaniam, A. Akel, S. Eilert, and J. Eno,
“To pim or not for emerging general purpose processing in ddr memory
systems,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, 2022, pp. 231–244.

[19] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao,
O. Mutlu, and Y. N. Patt, “Parallel application memory scheduling,”
in Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, 2011, pp. 362–373.

[20] A. Elafrou, G. Goumas, and N. Koziris, “Conflict-free symmetric sparse
matrix-vector multiplication on multicore architectures,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2019, pp. 1–15.

[21] A. F. Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA: near-dram
acceleration architecture leveraging commodity DRAM devices and
standard memory modules,” in 21st IEEE International Symposium on
High Performance Computer Architecture, HPCA 2015, Burlingame,
CA, USA, February 7-11, 2015. IEEE Computer Society, 2015, pp. 283–
295. [Online]. Available: https://doi.org/10.1109/HPCA.2015.7056040

[22] D. Foley and J. Danskin, “Ultra-performance pascal gpu and nvlink
interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, 2017.

[23] A. for Competitive Programming, “The minimum-cost maximum-flow
algorithm,” https://cp-algorithms.com/graph/min cost flow.html.

[24] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in 2015 International Conference
on Parallel Architectures and Compilation, PACT 2015, San Francisco,
CA, USA, October 18-21, 2015. IEEE Computer Society, 2015, pp.
113–124. [Online]. Available: https://doi.org/10.1109/PACT.2015.22

[25] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in 2015 International Conference
on Parallel Architecture and Compilation (PACT). IEEE, 2015, pp.
113–124.

[26] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in 2015 International Conference
on Parallel Architectures and Compilation, PACT 2015, San Francisco,
CA, USA, October 18-21, 2015. IEEE Computer Society, 2015, pp.
113–124. [Online]. Available: https://doi.org/10.1109/PACT.2015.22

[27] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in 2015 International Conference
on Parallel Architectures and Compilation, PACT 2015, San Francisco,
CA, USA, October 18-21, 2015. IEEE Computer Society, 2015, pp.
113–124. [Online]. Available: https://doi.org/10.1109/PACT.2015.22

[28] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
scalable and efficient neural network acceleration with 3d memory,”
in Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017, Y. Chen,
O. Temam, and J. Carter, Eds. ACM, 2017, pp. 751–764. [Online].
Available: https://doi.org/10.1145/3037697.3037702

[29] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,” in
Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017, pp. 751–764.

[30] K. Gharibdoust, A. Tajalli, and Y. Leblebici, “10.3 a 7.5mw 7.5gb/s
mixed nrz/multi-tone serial-data transceiver for multi-drop memory in-
terfaces in 40nm cmos,” in 2015 IEEE International Solid-State Circuits
Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1–3.

[31] C. Giannoula, N. Vijaykumar, N. Papadopoulou, V. Karakostas, I. Fer-
nandez, J. Gómez-Luna, L. Orosa, N. Koziris, G. Goumas, and
O. Mutlu, “Syncron: Efficient synchronization support for near-data-
processing architectures,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2021, pp.
263–276.

[32] J. Gómez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira,
and O. Mutlu, “Benchmarking a new paradigm: An experimental
analysis of a real processing-in-memory architecture,” arXiv preprint
arXiv:2105.03814, 2021.

314Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

[33] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, “ipim:
Programmable in-memory image processing accelerator using near-bank
architecture,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2020, pp. 804–817.

[34] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A hardware-
software co-designed disaggregated memory system,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
417–433. [Online]. Available: https://doi.org/10.1145/3503222.3507762

[35] M. Hadji and D. Zeghlache, “Minimum cost maximum flow algorithm
for dynamic resource allocation in clouds,” in 2012 IEEE Fifth Interna-
tional Conference on Cloud Computing. IEEE, 2012, pp. 876–882.

[36] B. Hong, Y. Ro, and J. Kim, “Multi-dimensional parallel training
of winograd layer on memory-centric architecture,” in 51st Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer Society,
2018, pp. 682–695. [Online]. Available: https://doi.org/10.1109/MICRO.
2018.00061

[37] HPE, “Hpe proliant dl380 gen9 server,” https://support.hpe.com/hpesc/
public/docDisplay?docId=emr na-c05240460.

[38] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vi-
jaykumar, O. Mutlu, and S. W. Keckler, “Transparent offloading and
mapping (tom) enabling programmer-transparent near-data processing
in gpu systems,” ACM SIGARCH Computer Architecture News, vol. 44,
no. 3, pp. 204–216, 2016.

[39] W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, “Medal: Scalable
dimm based near data processing accelerator for dna seeding algorithm,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 587–599.

[40] Intel, “Cxl,” https://www.computeexpresslink.org.
[41] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. J. Dally,

“Booksim 2.0 user’s guide,” Standford University, p. q1, 2010.
[42] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck identi-

fication and scheduling in multithreaded applications,” ACM SIGARCH
Computer Architecture News, vol. 40, no. 1, pp. 223–234, 2012.

[43] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Utility-based
acceleration of multithreaded applications on asymmetric cmps,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 154–165,
2013.

[44] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee et al., “Recnmp:
Accelerating personalized recommendation with near-memory process-
ing,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2020, pp. 790–803.

[45] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han,
Y. Cho, J. H. Kim, Y. Kwon et al., “Near-memory processing in action:
Accelerating personalized recommendation with axdimm,” IEEE Micro,
2021.

[46] C. Kim, H.-W. Lee, and J. Song, “Memory interfaces: past, present, and
future,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 23–34,
2016.

[47] D. Kim, T. Na, S. Yalamanchili, and S. Mukhopadhyay, “Deeptrain:
A programmable embedded platform for training deep neural
networks,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
vol. 37, no. 11, pp. 2360–2370, 2018. [Online]. Available: https:
//doi.org/10.1109/TCAD.2018.2858358

[48] H. Kim, H. Park, T. Kim, K. Cho, E. Lee, S. Ryu, H.-J. Lee, K. Choi,
and J. Lee, “Gradpim: A practical processing-in-dram architecture for
gradient descent,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 249–
262.

[49] J. H. Kim, S.-h. Kang, S. Lee, H. Kim, W. Song, Y. Ro, S. Lee, D. Wang,
H. Shin, B. Phuah et al., “Aquabolt-xl: Samsung hbm2-pim with in-
memory processing for ml accelerators and beyond,” in 2021 IEEE Hot
Chips 33 Symposium (HCS). IEEE, 2021, pp. 1–26.

[50] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–49,
2016. [Online]. Available: https://doi.org/10.1109/LCA.2015.2414456

[51] Y. Kwon, S. H. Lee, J. Lee, S. Kwon, J. Ryu, J. Son, S. O, H. Yu,
H. Lee, S. Y. Kim, Y. Cho, J. G. Kim, J. Choi, H. Shin, J. Kim,
B. Phuah, H. Kim, M. J. Song, A. Choi, D. Kim, S. Kim, E. Kim,
D. Wang, S. Kang, Y. Ro, S. Seo, J. Song, J. Youn, K. Sohn, and
N. S. Kim, “25.4 A 20nm 6gb function-in-memory dram, based on

HBM2 with a 1.2tflops programmable computing unit using bank-level
parallelism, for machine learning applications,” in IEEE International
Solid-State Circuits Conference, ISSCC 2021, San Francisco, CA, USA,
February 13-22, 2021. IEEE, 2021, pp. 350–352. [Online]. Available:
https://doi.org/10.1109/ISSCC42613.2021.9365862

[52] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 740–753.

[53] S. Lee, J. Seo, K. Lim, J. Ko, J.-Y. Sim, H.-J. Park, and B. Kim,
“A 7.8gb/s/pin 1.96pj/b compact single-ended trx and cdr with phase-
difference modulation for highly reflective memory interfaces,” in 2018
IEEE International Solid - State Circuits Conference - (ISSCC), 2018,
pp. 272–274.

[54] Y. S. Lee and T. H. Han, “Task parallelism-aware deep neural
network scheduling on multiple hybrid memory cube-based processing-
in-memory,” IEEE Access, vol. 9, pp. 68 561–68 572, 2021. [Online].
Available: https://doi.org/10.1109/ACCESS.2021.3077294

[55] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “The mcpat framework for multicore and manycore
architectures: Simultaneously modeling power, area, and timing,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 10,
no. 1, pp. 1–29, 2013.

[56] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for expansion and sharing in blade
servers,” in Proceedings of the 36th Annual International Symposium
on Computer Architecture, ser. ISCA ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 267–278. [Online].
Available: https://doi.org/10.1145/1555754.1555789

[57] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heterogeneous
approach,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 655–668.

[58] L. Liu, J. Lin, Z. Qu, Y. Ding, and Y. Xie, “Enmc: Extreme near-memory
classification via approximate screening,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021, pp.
1309–1322.

[59] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, “Concurrent data struc-
tures for near-memory computing,” in Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures, 2017, pp.
235–245.

[60] H. Löf and S. Holmgren, “affinity-on-next-touch: Increasing the perfor-
mance of an industrial pde solver on a cc-numa system,” in Proceedings
of the 19th annual international conference on Supercomputing, 2005,
pp. 387–392.

[61] P. J. Meaney, L. D. Curley, G. D. Gilda, M. R. Hodges, D. J. Buerkle,
R. D. Siegl, and R. K. Dong, “The ibm z13 memory subsystem for big
data,” IBM Journal of Research and Development, vol. 59, no. 4/5, pp.
4–1, 2015.

[62] Micron, “32gb (x72, ecc, dr) 288-pin ddr4 rdimm.”
[63] Micron, “Tn-40-40: Ddr4 point-to-point design guide.”
[64] W. Moolman, “The maximum flow and minimum cost–maximum flow

problems: Computing and applications,” Asian Journal of Probability
and Statistics, pp. 28–57, 2020.

[65] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim,
“Graphpim: Enabling instruction-level PIM offloading in graph
computing frameworks,” in 2017 IEEE International Symposium on
High Performance Computer Architecture, HPCA 2017, Austin, TX,
USA, February 4-8, 2017. IEEE Computer Society, 2017, pp. 457–468.
[Online]. Available: https://doi.org/10.1109/HPCA.2017.54

[66] J. Nider, C. Mustard, A. Zoltan, J. Ramsden, L. Liu, J. Grossbard,
M. Dashti, R. Jodin, A. Ghiti, J. Chauzi et al., “A case study of
{Processing-in-Memory} in {off-the-Shelf} systems,” in 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp. 117–130.

[67] [Online], “Xilinx vitis libraries,” https://github.com/Xilinx/Vitis
Libraries.

[68] J. Park, B. Kim, S. Yun, E. Lee, M. Rhu, and J. H. Ahn, “Trim:
Enhancing processor-memory interfaces with scalable tensor reduction
in memory,” in MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2021, pp. 268–281.

[69] J. W. Poulton, J. M. Wilson, W. J. Turner, B. Zimmer, X. Chen, S. S.
Kudva, S. Song, S. G. Tell, N. Nedovic, W. Zhao, S. R. Sudhakaran,
C. T. Gray, and W. J. Dally, “A 1.17-pj/b, 25-gb/s/pin ground-referenced
single-ended serial link for off- and on-package communication using

315Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

a process- and temperature-adaptive voltage regulator,” IEEE J. Solid
State Circuits, vol. 54, no. 1, pp. 43–54, 2019. [Online]. Available:
https://doi.org/10.1109/JSSC.2018.2875092

[70] Samsung, “Samsung brings in-memory processing power to wider
range of applications,” https://semiconductor.samsung.com/newsroom/
news/samsung-brings-in-memory-processing-power-to-wider-range-of-
applications/.

[71] D. Sánchez and C. Kozyrakis, “Zsim: fast and accurate
microarchitectural simulation of thousand-core systems,” in The 40th
Annual International Symposium on Computer Architecture, ISCA’13,
Tel-Aviv, Israel, June 23-27, 2013, A. Mendelson, Ed. ACM, 2013, pp.
475–486. [Online]. Available: https://doi.org/10.1145/2485922.2485963

[72] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini, “A scalable
near-memory architecture for training deep neural networks on large in-
memory datasets,” IEEE Trans. Computers, vol. 68, no. 4, pp. 484–497,
2019. [Online]. Available: https://doi.org/10.1109/TC.2018.2876312

[73] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch et al.,
“Rowclone: Fast and energy-efficient in-dram bulk data copy and ini-
tialization,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, 2013, pp. 185–197.

[74] Stanford, “Stanford large network dataset collection,” http://snap.
stanford.edu/data/index.html.

[75] J. Stuecheli, W. J. Starke, J. D. Irish, L. B. Arimilli, D. Dreps, B. Blaner,
C. Wollbrink, and B. Allison, “Ibm power9 opens up a new era of
acceleration enablement: Opencapi,” IBM Journal of Research and
Development, vol. 62, no. 4/5, pp. 8–1, 2018.

[76] W. Sun, Z. Li, S. Yin, S. Wei, and L. Liu, “ABC-DIMM: alleviating the
bottleneck of communication in dimm-based near-memory processing
with inter-dimm broadcast,” in 48th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2021, Valencia, Spain,
June 14-18, 2021. IEEE, 2021, pp. 237–250. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00027

[77] N. Talati, H. Ye, Y. Yang, L. Belayneh, K.-Y. Chen, D. T. Blaauw,
T. N. Mudge, and R. G. Dreslinski, “Ndminer: accelerating graph pattern
mining using near data processing.” in ISCA, 2022, pp. 146–159.

[78] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware
scheduling on smp-cmp-smt multiprocessors,” ACM SIGOPS Operating
Systems Review, vol. 41, no. 3, pp. 47–58, 2007.

[79] X. Tang, J. Zhai, X. Qian, and W. Chen, “plock: A fast lock for
architectures with explicit inter-core message passing,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2019, pp. 765–
778.

[80] K. Therdsteerasukdi, G.-S. Byun, J. Ir, G. Reinman, J. Cong, and
M. F. Chang, “The dimm tree architecture: A high bandwidth and
scalable memory system,” in 2011 IEEE 29th International Conference
on Computer Design (ICCD). IEEE, 2011, pp. 388–395.

[81] thomas krenn, “Optimize memory performance of intel xeon
scalable systems,” https://www.thomas-krenn.com/en/wiki/Optimize
memory performance of Intel Xeon Scalable systems.

[82] P.-A. Tsai, C. Chen, and D. Sanchez, “Adaptive scheduling for systems
with asymmetric memory hierarchies,” in 2018 51st Annual IEEE/ACM
international symposium on microarchitecture (MICRO). IEEE, 2018,
pp. 641–654.

[83] Y. Wang, W. Chen, J. Yang, and T. Li, “Towards memory-efficient
allocation of cnns on processing-in-memory architecture,” IEEE Trans.
Parallel Distributed Syst., vol. 29, no. 6, pp. 1428–1441, 2018.
[Online]. Available: https://doi.org/10.1109/TPDS.2018.2791440

[84] X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu, and Y. Xie,
“Spacea: Sparse matrix vector multiplication on processing-in-memory
accelerator,” in IEEE International Symposium on High-Performance
Computer Architecture, HPCA 2021, Seoul, South Korea, February 27
- March 3, 2021. IEEE, 2021, pp. 570–583. [Online]. Available:
https://doi.org/10.1109/HPCA51647.2021.00055

[85] S. Yin, S. Tang, X. Lin, P. Ouyang, F. Tu, L. Liu, J. Zhao, C. Xu,
S. Li, Y. Xie, and S. Wei, “Parana: A parallel neural architecture
considering thermal problem of 3d stacked memory,” IEEE Trans.
Parallel Distributed Syst., vol. 30, no. 1, pp. 146–160, 2019. [Online].
Available: https://doi.org/10.1109/TPDS.2018.2858230

[86] C. Yu, S. Liu, and S. M. Khan, “Multipim: A detailed and configurable
multi-stack processing-in-memory simulator,” IEEE Comput. Archit.
Lett., vol. 20, no. 1, pp. 54–57, 2021. [Online]. Available:
https://doi.org/10.1109/LCA.2021.3061905

[87] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu,
and M. Ignatowski, “TOP-PIM: throughput-oriented programmable
processing in memory,” in The 23rd International Symposium on
High-Performance Parallel and Distributed Computing, HPDC’14,
Vancouver, BC, Canada - June 23 - 27, 2014, B. Plale, M. Ripeanu,
F. Cappello, and D. Xu, Eds. ACM, 2014, pp. 85–98. [Online].
Available: https://doi.org/10.1145/2600212.2600213

[88] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “Graphp: Reducing communication for pim-based graph
processing with efficient data partition,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2018, pp. 544–557.

[89] Y. Zhao, C. Liu, Z. Du, Q. Guo, X. Hu, Y. Zhuang, Z. Zhang, X. Song,
W. Li, X. Zhang et al., “Cambricon-q: a hybrid architecture for efficient
training,” in 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2021, pp. 706–719.

[90] X. W. X. W. G. S. Zhe Zhou, Cong Li, “Gnnear: Accelerating full-batch
training of graph neural networks with near-memory processing,” in Pro-
ceedings of the 31st International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2022.

[91] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“Graphq: Scalable pim-based graph processing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 712–725.

316Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 17,2024 at 23:08:37 UTC from IEEE Xplore. Restrictions apply.

