
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System-Level I/O

15-213/15-513: Introduction to Computer Systems
20th Lecture, July 16, 2024

Instructors:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System level: below standard level

#include <stdio.h>

int main(void) {
FILE *fp = fopen("output.txt", "w");
if (!fp) {

perror("output.txt");
return 1;

}
fputs("baby shark (do doo dooo)\n", fp);
if (fclose(fp)) {

perror("output.txt");
return 1;

}
return 0;

}

FILE *fopen(const char *fname,
const char *mode) {

int fd = open(fname,
__mode2flags(mode),
DEFFILEPERMS);

if (fd == -1) {
return NULL;

}
return fdopen(fd, mode);

}

int fputs(const char *s, FILE *fp) {
size_t n = strlen(s);
while (n > 0) {

ssize_t written =
write(fp->fd, s, n);

if (written < 0) return EOF;
n -= written;
s += written;

}
return 0;

}

int fclose(FILE *fp) {
int rv = close(fp->fd);
__ffree(fp);
return rv;

}

.globl close
close:

mov $3, %eax
syscall
cmp $-4096, %rax
jae __syscall_error
ret

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why do we have two sets?

fopen

fdopen

stat

close

write

read

open

fwrite

fprintf

fputs

fputc

fflush

fclose

fseek

ftell
lseek

fread

fscanf

fgets

fgetc

rio_readn

rio_readlineb

rio_readnb

rio_writen

rio_readinitb

Maximum control

Minimum convenience

Can be used from signal handlers

Can be used for network connections

Less control

More convenience

Not safe in signal handlers

Not safe with network connections

You can write your own set of high-

level convenient functions if you want!

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛ Unix I/O

⬛ Standard I/O

⬛ Which I/O when

⬛ Metadata, sharing, and redirection

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

⬛ A file is a sequence of bytes:
▪ B0 , B1 , , Bk , , Bm-1

⬛ Cool fact: All I/O devices are represented as files:
▪ /dev/sda2 (disk partition)

▪ /dev/tty2 (terminal)

▪ /dev/null (discard all writes / read empty file)

⬛ Cool fact: Kernel data structures are exposed as files
▪ cat /proc/$$/status

▪ ls -l /proc/$$/fd/

▪ ls –RC /sys/devices | less

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview

⬛ Kernel offers a set of basic operations for all files
▪ Opening and closing files

▪ open()and close()

▪ Reading and writing a file

▪ read() and write()

▪ Look up information about a file (size, type, last modification time, …)

▪ stat(), lstat(), fstat()

▪ Changing the current file position (seek)

▪ indicates next offset into file to read or write

▪ lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k
(in between bytes k-1 and k)

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Types

⬛ Each file has a type indicating its role in the system
▪ Regular file: Stores arbitrary data

▪ Directory: Index for a related group of files

▪ Socket: For communicating with a process on another machine

⬛ Other file types beyond our scope
▪ Named pipes (FIFOs)

▪ Symbolic links

▪ Character and block devices

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Regular Files

⬛ A regular file contains arbitrary data

⬛ Applications often distinguish between text and binary files
▪ Text files contain human-readable text

▪ Binary files are everything else (object files, JPEG images, …)

▪ Kernel doesn’t care! It’s all just bytes!

⬛ Text file is sequence of text lines
▪ Text line is sequence of characters terminated (not separated!)

by end of line indicator

▪ Characters are defined by a text encoding (ASCII, UTF-8, EUC-JP, …)

⬛ End of line (EOL) indicators:
▪ All “Unix”: Single byte 0x0A

▪ line feed (LF)

▪ DOS, Windows: Two bytes 0x0D 0x0A

▪ Carriage return (CR) followed by line feed (LF)

▪ Also used by many Internet protocols

▪ C library translates to '\n'

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directories

⬛ Directory consists of an array of entries (also called links)
▪ Each entry maps a filename to a file

⬛ Each directory contains at least two entries
▪ . (dot) maps to the directory itself

▪ .. (dot dot) maps to the parent directory
in the directory hierarchy (next slide)

⬛ Commands for manipulating directories
▪ mkdir: create empty directory

▪ ls: view directory contents

▪ rmdir: delete empty directory

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directory Hierarchy

⬛ All files are organized as a hierarchy anchored by root directory
named / (slash)

⬛ Kernel maintains current working directory (cwd) for each process
▪ Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pathnames

⬛ Locations of files in the hierarchy denoted by pathnames
▪ Absolute pathname starts with ‘/’ and denotes path from root

▪ /home/droh/hello.c

▪ Relative pathname denotes path from current working directory

▪ ../droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

hello.c

cwd: /home/bryant

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Opening Files

⬛ Opening a file informs the kernel that you are getting ready to
access that file

⬛ Returns a small identifying integer file descriptor
▪ fd == -1 indicates that an error occurred

⬛ Each process begins life with three open files
▪ 0: standard input (stdin)

▪ 1: standard output (stdout)

▪ 2: standard error (stderr)

▪ These could be files, pipes, your terminal, or even a network connection!

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lots of ways to call open

Open an existing file:

open(path, flags)

flags must include exactly one of:

Flags may also include (use | to combine)

(and many more… consult the open() manpage)

Open or create a file:

open(path, flags, mode)

flags must include

and exactly one of:

and maybe also some of:

O_RDONLY Only want to read from file

O_WRONLY Only want to write to file

O_RDWR Want to do both

O_CREAT Create the file if it doesn’t exist

O_APPEND All writes go to the very end

O_TRUNC Delete existing contents if any

O_CLOEXEC Close this file if execve() is called

O_WRONLY Only want to write to file

O_RDWR Want to write and read

O_EXCL Fail if file does exist

O_APPEND All writes go to the very end

O_TRUNC Delete existing contents if any

O_CLOEXEC Close this file if execve() is called

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The third argument to open

⬛ Yes, open takes either two or three arguments
▪ Bet you thought you couldn’t do that in C

▪ Look through /usr/include/fcntl.h and try to figure out how
it’s done

▪ Third argument must be present when O_CREAT appears in second
argument; ignored otherwise

⬛ Third argument gives default access permissions
for newly created files
▪ Modified by umask setting (see man umask)

▪ Use DEFFILEMODE (from sys/stat.h) unless you have a specific
reason to want something else

▪ More explanation:
▪ https://linuxfoundation.org/blog/classic-sysadmin-understanding-linux-

file-permissions/

▪ https://linuxcommand.org/lc3_lts0090.php

▪ https://devconnected.com/linux-file-permissions-complete-guide/

https://linuxfoundation.org/blog/classic-sysadmin-understanding-linux-file-permissions/
https://linuxfoundation.org/blog/classic-sysadmin-understanding-linux-file-permissions/
https://linuxcommand.org/lc3_lts0090.php
https://devconnected.com/linux-file-permissions-complete-guide/

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closing Files

⬛ Closing a file informs the kernel that you are finished
accessing that file

⬛ Take care not to close any file more than once
▪ Same as not calling free() twice on the same pointer

⬛ Closing a file can fail!
▪ Well, not exactly fail—the file is still closed

▪ The OS is taking this opportunity to report a delayed error
from a previous write operation

▪ You might silently lose data if you don’t check!

if (close(fd) < 0) {

fprintf(stderr, "%s: write error: %s",

filename, strerror(errno));

exit(1);

}

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Files

⬛ Reading a file copies bytes from the current file position to
memory, and then updates file position

⬛ Returns number of bytes read from file fd into buf
▪ Return type ssize_t is signed integer

▪ nbytes < 0 indicates that an error occurred

▪ Short counts (nbytes < sizeof(buf)) are possible
and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Files

⬛ Writing a file copies bytes from memory to the current file
position, and then updates current file position

⬛ Returns number of bytes written from buf to file fd
▪ nbytes < 0 indicates that an error occurred

▪ As with reads, short counts are possible and are not errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");

exit(1);

}

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example
⬛ Copying stdin to stdout, one byte at a time

#include <unistd.h>

int main(void) {

char c;

while(read(STDIN_FILENO, &c, 1) != 0)

write(STDOUT_FILENO, &c, 1);

return 0;

}

Always check return codes from system calls!

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example
⬛ Copying stdin to stdout, one byte at a time

#include <unistd.h>

#include <stdio.h>

int main(void) {

char c;

for (;;) {

ssize_t nread = read(STDIN_FILENO, &c, 1);

if (nread == 0) {

return 0;

} else if (nread < 0) {

perror("stdin");

return 1;

}

if (write(STDOUT_FILENO, &c, 1) < 1) {

perror("stdout: write error");

return 1;

}

}

}

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example
⬛ Copying stdin to stdout, one byte at a time

#include "csapp.h"

int main(void) {

char c;

while (Read(STDIN_FILENO, &c, 1) != 0) {

Write(STDOUT_FILENO, &c, 1);

}

return 0;

}

“Stevens wrappers” make things shorter…

but they don’t let you recover from errors

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Short Counts

⬛ Short counts can occur in these situations:
▪ Encountering (end-of-file) EOF on reads

▪ Reading text lines from a terminal

▪ Reading and writing network sockets, pipes, etc.

⬛ Short counts never occur in these situations:
▪ Reading from disk files (except for EOF)

▪ Writing to disk files

⬛ Best practice is to always allow for short counts.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛ Unix I/O

⬛ Standard I/O

⬛ Which I/O when

⬛ Metadata, sharing, and redirection

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Functions

⬛ The C standard library (libc.so) contains a collection of
higher-level standard I/O functions
▪ Documented in Appendix B of K&R

⬛ Examples of standard I/O functions:
▪ Opening and closing files (fopen and fclose)

▪ Reading and writing bytes (fread and fwrite)

▪ Reading and writing text lines (fgets and fputs)

▪ Formatted reading and writing (fscanf and fprintf)

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Streams

⬛ Standard I/O models open files as streams
▪ Abstraction for a file descriptor and a buffer in memory

⬛ C programs begin life with three open streams
(defined in stdio.h)
▪ stdin (standard input)

▪ stdout (standard output)

▪ stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

fprintf(stdout, "Hello, world\n");

}

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Motivation

⬛ Applications often read/write one character at a time
▪ getc, putc, ungetc

▪ gets, fgets

▪ Read line of text one character at a time, stopping at newline

⬛ Implementing as Unix I/O calls expensive
▪ read and write require Unix kernel calls

▪ > 10,000 clock cycles

⬛ Solution: Buffered read
▪ Use Unix read to grab block of bytes

▪ User input functions take one byte at a time from buffer

▪ Refill buffer when empty

unreadalready readBuffer

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffering in Standard I/O

⬛ Standard I/O functions use buffered I/O

⬛ Buffer flushed to output fd on “\n”, call to fflush or
exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Buffering in Action

⬛ You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

linux> strace ./hello

execve("./hello", ["hello"], [/* ... */]).

...

write(1, "hello\n", 6) = 6

...

exit_group(0) = ?

#include <stdio.h>

int main()

{

printf("h");

printf("e");

printf("l");

printf("l");

printf("o");

printf("\n");

fflush(stdout);

exit(0);

}

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛ Unix I/O

⬛ Standard I/O

⬛ Which I/O when

⬛ Metadata, sharing, and redirection

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Unix I/O

⬛ Pros
▪ Unix I/O is the most general form of I/O

▪ All other I/O packages are implemented using Unix I/O functions

▪ Unix I/O provides functions for accessing file metadata

▪ Unix I/O functions are async-signal-safe and can be used safely in signal
handlers

⬛ Cons
▪ Dealing with short counts is tricky and error prone

▪ Efficient reading of text lines requires some form of buffering, also tricky
and error prone

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Standard I/O

⬛ Pros:
▪ Buffering increases efficiency by decreasing the number of read and
write system calls

▪ Short counts are handled automatically

⬛ Cons:
▪ Provides no function for accessing file metadata

▪ Standard I/O functions are not async-signal-safe, and not appropriate for
signal handlers

▪ Standard I/O is not appropriate for input and output on network sockets

▪ There are poorly documented restrictions on streams that interact
badly with restrictions on sockets (CS:APP3e, Sec 10.11)

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choosing I/O Functions

⬛ General rule: use the highest-level I/O functions you can
▪ Many C programmers are able to do all of their work using

the standard I/O functions

▪ But, be sure to understand the functions you use!

⬛ When to use standard I/O
▪ When working with “ordinary” files

⬛ When to use raw Unix I/O
▪ Inside signal handlers, because Unix I/O is async-signal-safe

▪ When you are reading and writing network sockets
▪ Libraries dedicated to buffered network I/O make this easier

▪ CS:APP rio_* functions; libevent, libuv, …

▪ In rare cases when you need absolute highest performance

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Working with Binary Files

⬛ Functions you should never use on binary files
▪ Text-oriented I/O: such as fgets, scanf, rio_readlineb

▪ Interpret EOL characters.

▪ Use functions like rio_readn or rio_readnb instead

▪ String functions

▪ strlen, strcpy, strcat

▪ Interprets byte value 0 (end of string) as special

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛ Unix I/O

⬛ Standard I/O

⬛ Which I/O when

⬛ Metadata, sharing, and redirection

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Metadata
⬛ Metadata is data about data, in this case file data

⬛ Per-file metadata maintained by kernel
▪ accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev; /* Device */

ino_t st_ino; /* inode */

mode_t st_mode; /* Protection and file type */

nlink_t st_nlink; /* Number of hard links */

uid_t st_uid; /* User ID of owner */

gid_t st_gid; /* Group ID of owner */

dev_t st_rdev; /* Device type (if inode device) */

off_t st_size; /* Total size, in bytes */

unsigned long st_blksize; /* Blocksize for filesystem I/O */

unsigned long st_blocks; /* Number of blocks allocated */

time_t st_atime; /* Time of last access */

time_t st_mtime; /* Time of last modification */

time_t st_ctime; /* Time of last change */

};

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How the Unix Kernel Represents Open Files

⬛ Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat

struct

File pos is maintained per open file

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Sharing
⬛ Two distinct descriptors sharing the same disk file through

two distinct open file table entries
▪ E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A (disk)

File B (disk)

Different logical but same physical file

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork
⬛ A child process inherits its parent’s open files

▪ Note: situation unchanged by exec functions (use fcntl to change)

⬛ Before fork call:

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork

⬛ A child process inherits its parent’s open files

⬛ After fork:
▪ Child’s table same as parent’s, and +1 to each refcnt

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=2

...

File pos

refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

fd 0

fd 1

fd 2

fd 3

fd 4

Parent

Child

File is shared between processes

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection

⬛ Question: How does a shell implement I/O redirection?
linux> ls > foo.txt

⬛ Answer: By calling the dup2(oldfd, newfd) function
▪ Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example

⬛ Step #1: open file to which stdout should be redirected
▪ Happens in child executing shell code, before exec

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File A

File pos

refcnt=1

...

File access

...

File size

File type

File B

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example (cont.)

⬛ Step #2: call dup2(4,1)
▪ cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos

refcnt=0

...

File pos

refcnt=2

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

Two descriptors point to the same file

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

⬛ What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char c1, c2, c3;

char *fname = argv[1];

fd1 = open(fname, O_RDONLY, 0);

fd2 = open(fname, O_RDONLY, 0);

fd3 = open(fname, O_RDONLY, 0);

dup2(fd2, fd3);

read(fd1, &c1, 1);

read(fd2, &c2, 1);

read(fd3, &c3, 1);

printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

return 0;

} ffiles1.c

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

⬛ What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char c1, c2, c3;

char *fname = argv[1];

fd1 = open(fname, O_RDONLY, 0);

fd2 = open(fname, O_RDONLY, 0);

fd3 = open(fname, O_RDONLY, 0);

dup2(fd2, fd3);

read(fd1, &c1, 1);

read(fd2, &c2, 1);

read(fd3, &c3, 1);

printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);

return 0;

} ffiles1.c

c1 = a, c2 = a, c3 = b

dup2(oldfd, newfd)

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

⬛ What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1;

int s = getpid() & 0x1;

char c1, c2;

char *fname = argv[1];

fd1 = open(fname, O_RDONLY, 0);

read(fd1, &c1, 1);

if (fork()) { /* Parent */

sleep(s);

read(fd1, &c2, 1);

printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */

sleep(1-s);

read(fd1, &c2, 1);

printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}

return 0;

} ffiles2.c

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

⬛ What would this program print for file containing “abcde”?

#include "csapp.h"

int main(int argc, char *argv[])

{

int fd1;

int s = getpid() & 0x1;

char c1, c2;

char *fname = argv[1];

fd1 = open(fname, O_RDONLY, 0);

read(fd1, &c1, 1);

if (fork()) { /* Parent */

sleep(s);

read(fd1, &c2, 1);

printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else { /* Child */

sleep(1-s);

read(fd1, &c2, 1);

printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}

return 0;

} ffiles2.c

Child: c1 = a, c2 = b

Parent: c1 = a, c2 = c

Parent: c1 = a, c2 = b

Child: c1 = a, c2 = c

Bonus: Which way does it go?

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Supplementary slides

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The RIO Package (213/CS:APP Package)

⬛ RIO is a set of wrappers that provide efficient and robust I/O
in apps, such as network programs that are subject to short
counts

⬛ RIO provides two different kinds of functions
▪ Unbuffered input and output of binary data

▪ rio_readn and rio_writen

▪ Buffered input of text lines and binary data

▪ rio_readlineb and rio_readnb

▪ Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

⬛ Download from http://csapp.cs.cmu.edu/3e/code.html
→ src/csapp.c and include/csapp.h

http://csapp.cs.cmu.edu/public/code.html

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unbuffered RIO Input and Output

⬛ Same interface as Unix read and write

⬛ Especially useful for transferring data on network sockets

▪ rio_readn returns short count only if it encounters EOF

▪ Only use it when you know how many bytes to read

▪ rio_writen never returns a short count

▪ Calls to rio_readn and rio_writen can be interleaved arbitrarily on
the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions

⬛ Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

▪ rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf

▪ Especially useful for reading text lines from network sockets
▪ Stopping conditions

▪ maxlen bytes read
▪ EOF encountered
▪ Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions (cont.)

▪ rio_readnb reads up to n bytes from file fd

▪ Stopping conditions
▪ maxlen bytes read
▪ EOF encountered

▪ Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor

▪ Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

	Slide 1: System-Level I/O 15-213/15-513: Introduction to Computer Systems 20th Lecture, July 16, 2024
	Slide 2: System level: below standard level
	Slide 3: Why do we have two sets?
	Slide 4: Today
	Slide 5: Unix I/O Overview
	Slide 6: Unix I/O Overview
	Slide 7: File Types
	Slide 8: Regular Files
	Slide 9: Directories
	Slide 10: Directory Hierarchy
	Slide 11: Pathnames
	Slide 12: Opening Files
	Slide 13: Lots of ways to call open
	Slide 14: The third argument to open
	Slide 15: Closing Files
	Slide 16: Reading Files
	Slide 17: Writing Files
	Slide 18: Simple Unix I/O example
	Slide 19: Simple Unix I/O example
	Slide 20: Simple Unix I/O example
	Slide 21: On Short Counts
	Slide 22: Today
	Slide 23: Standard I/O Functions
	Slide 24: Standard I/O Streams
	Slide 25: Buffered I/O: Motivation
	Slide 26: Buffering in Standard I/O
	Slide 27: Standard I/O Buffering in Action
	Slide 28: Today
	Slide 29: Pros and Cons of Unix I/O
	Slide 30: Pros and Cons of Standard I/O
	Slide 31: Choosing I/O Functions
	Slide 32: Aside: Working with Binary Files
	Slide 33: Today
	Slide 34: File Metadata
	Slide 36: How the Unix Kernel Represents Open Files
	Slide 37: File Sharing
	Slide 38: How Processes Share Files: fork
	Slide 39: How Processes Share Files: fork
	Slide 40: I/O Redirection
	Slide 41: I/O Redirection Example
	Slide 42: I/O Redirection Example (cont.)
	Slide 43: Warm-Up: I/O and Redirection Example
	Slide 44: Warm-Up: I/O and Redirection Example
	Slide 45: Master Class: Process Control and I/O
	Slide 46: Master Class: Process Control and I/O
	Slide 47: Supplementary slides
	Slide 48: The RIO Package (213/CS:APP Package)
	Slide 49: Unbuffered RIO Input and Output
	Slide 50: Buffered RIO Input Functions
	Slide 51: Buffered RIO Input Functions (cont.)

