Carnegie Mellon

15-213 Recitation
Bomblab

Your TAs
Friday, January 24th

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Reminders

m datalabis due on Tuesday (Jan 28).

m bomblab is out! Due February 6th.

m Cprogramming lab was due - last day to submit is today!
m Bootcamp 2: Debugging & GDB is pre-recorded. Watch Ed for

the link.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Agenda

m Assembly Refresher

m Preview: Calling Conventions
® Intro to bomblab

m bomblab defuse kit

m gdb activity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Assembly Refresher

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Reading Assembly

m We will use AT&T syntax in this class:

movq Src, Dest movq Dest, Src
addg Src, Dest addg Dest, Src

AT&T Intel

m If you get stuck, refer to our assembly cheat sheet!

x86-64 Reference Sheet (GNU assembler format)

Instructions Arithmetic operations Instruction suffixes
Dest = address of Src b byte
Dat t
ata movement Dest. est + 1 w word (2 bytes)
aovg Sre, Dest Dest = Sre Dest = Dest — 1 long (4 bytes)

movsbq SreDest Dest (quad) =

c (byte), sign-extend addq Sre, Dest Dest = Dest +
movzbg SrcDest Dest (quad) = S S

e (byte), zero subg Ste, Dest Dest = Dest — Sre
imulq Sre, Dest Dest = Dest = Sre

q quad (8 bytes)

Condition codes

Conditional move xorq Ste, Dest Dest = Dest * Sre
; § orq Sre, Dest Dest = Dest | St P GirryiFiag
ve Src, Dest Equal / zero ¢ B CF Canty Flag
cnovne Src, Dest Not equal / not zero andq firc; Desk:: | Destm Lt & o ZF
cmovs Ste, Dest Negative nagy Dost Dostome=- Dot SF Sign Flag
cmovns Src, Dest Nonnegative actq Dest Deat o Deat OF Overflow Flag
cmovg Stc, Dest Greater (signed >) MakDm DSt
iovga Ss; Tt Qrealis of sinal (Uned’>) sarg k Dest Dest = Dest 3 k (arithmetic) :
b e paaytess shrq k Dest Dest = Dest > k (logical) Integer registers
cmovle Sre, Dest Less or equal (signed <) . Srax Return value
cmova Sre, Dest Above (unsigned >) Addressing modes rbx Callee saved
cnovae Src, Dest Above or equal (unsigned >) Sirex dth argument
cmovb Sre, Dest Below (unsigned <) « lmmediate Shrdx 3rd argument
cmovbe Src, Dest Below or equal (unsigned <) Sval Val ersi 2nd argument

val: constant integer value

Control transfer Ravd: 675 Meak

5th argument

rmal
(R) Mem[Reg[R)] oo o %
%9 Gth argumen

Jmp label jump R: register R specifies memory address & «
Jo label Jump equal movq (rex), Yirax T Smmene
Jne label Jump not equal i : T i meam
je label Jump negative plaCemex %12 Calles saved
Jas 1abel L D(R) Mem{Reg[R]+D) %13 Callee saved

. R: register specifis start of memory region %14 Callee saved

1abel Jump greater (signed >) .

b . D: constant displacement D specifies offset %15 Callee saved
Jge label Jump greater or equal (signed e
31 1abel Jump less (signed <) /8 (Krdd, X
Jle label Jump less or equal (signed <) + Indexed
Ja label jump above (unsigned >) D(Rb.R.S) Mem[Reg[Rb]+S*Reg(Ril +D]
Jb label Jump below (unsigned <) D: constant displacement 1,2, or 4 bytes
pushq % p 8 Mem[%rsp] = Sre Rb: base register: any of 8 integer registeis
popg Dest Dest = Mem{%rsp], %rsp = %rsp + 8 Ri: index register: any, except %esp
call label push address of next instruction, Jap label S, seale: 1.2 4. or §
rov %xip = Mem|%rsp), %rsp = %rsp + 8 ovq 0x100(trcx, Yrax,4), Yrdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

https://www.cs.cmu.edu/afs/cs/academic/class/15213-s20/www/recitations/x86-cheat-sheet.pdf

Reading Assembly: Operands

Constants (“Immediate” Values)

m Startwith $

$-15213 S0x3bed
Decimal Hex

Registers

m Can store values or addresses

m Start with %

srax Teax
“Return” Register Low 32 bits of $rax
Memory Locations

m Parentheses around a register, or an addressing mode

$rbx) Oxlc (%rax) 0x4 (%rcx, %rdi, 0x1)
Normal Displacement Indexed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Assembly: Addressing Modes

Displacement
m D(R) Mem[Reg[R] + D]
movqg 8 (%rdi), %rdx

D: Constant R: Register holding
Displacement starting address

Indexed

m D(Rb, Ri, S) Mem[Reg[Rb] + S*Reg[Ri] + D]

movqg 0x100 (%$rcx,%rax,4), %$rdx

N

D: Constant Rb: Base Register Ri: Index Register S: Scale
Displacement holding starting address (1, 2,4, 8)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Reading Assembly: Examples

Instruction Effect
mov 3%rbx, 3%rdx rdx = rbx

r8 += value at
address in rdx

add (%rdx), %r8

mul $3, %r8 r8 *= 3
sub $1, %r8 r8--
lea (%rdx, %rbx, 2), %rdx rdx = rdx + rbx * 2

™

No dereferencing!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Reading Assembly: Comparisons

Example

cmpl %r9, %rl0
jg 8675309

m “If the value of one register is greater than the value in the
other, then jump to 8675309”
m But which way around is it?

m Let’s use the cheat sheet!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

x86-64 Reference Sheet (GNU assembler format)

Arithmetic operations Instruction suffixes

Instructions

leag Src, Dest Dest = address of Sre b byte
Data movement incq Dest Dest = Dest + 1 v ey (2 bytes)
movq Sre, Dest Dest = Sre decq Dest Dest = Dest — 1 1 long (4 b\;tcs)

movsbq Sre.Dest Dest (quad) = Src (byte), sign-extend
movzbq Sre.Dest Dest (quad) = Sre (byte), zero-extend

addgq Src, Dest Dest = Dest + Sre
subg Src, Dest Dest = Dest — Src
imulq Src, Dest Dest = Dest = Sre
xorq Sre, Dest Dest = Dest ™ Sre

q quad (8 bytes)

Conditional move Condition codes

cmove Src, Dest Equal / zero ord S;c. Dg‘“ g(ﬂ - gcst kSéc CF Carry Flag
cmovne Src, Dest Not equal / not zero andq : rc‘, - ea‘t B _c"t IS e ZF fom Flag

cmovs Sre, Dest Negative negq Dest Dest = — Dest SF Sign Flag

cmovns Sre, Dest Nonnegative g:;: Ec;)‘cst g:t = 56202: X OF Overflow Flag
i) S:;c., DBSE (grcatcr (signad l>)" il sarq k, Dest Dest = Dest % k (arithmetic) .
cmovge Src, Dest Greater or equal (signed =) abig k, Dast Dest = Dest 3 & (logical) Integer registers

cmovl Src, Dest

Less (signed <)

cmovle Src, Dest Less or equal (signed <) . Y%rax Return value
cmova Src, Dest Above (unsigned >) Addr essing modes Y%rbx Callee saved
cmovae Src, Dest Above or equal (unsigned >) . Y%rex 4th argument
cmovb Src, Dest Below (unsigned <) ¢ Immediate Yrdx 3rd argument
cmovbe Src, Dest Below or equal (unsigned <) Sval Val Yrsi 2nd argument
val: consta,flt integer value Y%rdi 1st argument
Control transfer mavd AT Arac Yrbp Callee saved
0 v ' .
cmpq Sre2, Srel Sets CCs Srel Sre2 ¢ Normal l;thp §(;‘1ck.pounc1
testq Src2, Srcl Sets CCs Srel & Sre2 (R) Mem|Reg|R]| l;:ﬁ ;’.:ll fn'gumcn:
jmp label jump R: register R specifies memory address S e algumcvn‘
. . y %r10 Scratch register
je label jump equal movq (%rex), Yrax Sii Hoehid s = 227
jne label jump not equal . Uor e 7 i
S - ¢ Displacement %r12 Callee saved
js label jump negative r : : 71+
5 s D(R) Mem|[Reg/R|+D| %rl3 Callee saved
jns label jump non-negative 2 S , . pe
: s R: register specifies start of memory region %rl4 Callee saved
jg label jump greater (signed >) v . pa \
: ; 2 D: constant displacement D specifies offset %rl5 Callee saved
jge label jump greater or equal (signed =) 8(%rdi), Yrdx
j1 label jump less (signed <) i Ml st
J1e Iabel]Au“m Tess of 3'555_1 TSIned =) ¢ Indexed
ja label jump above (unsigned >) D(Rb,Ri,S) Mem[Reg[Rb|+S*Reg(Ri]+D)
jb label Jump bCLOW (unsngncdff) D: constant displacement 1, 2, or 4 bytes
pushq Sre arsp = Jirsp '8, Mem(%rsp| = Sre Rb: base register: any of 8 integer registers
popq Dest Dest = Mem([%rsp], %rsp = Y%rsp + 8 Ri: index register: any, except %esp
call label push address of next instruction, jmp label g geale: 1, 2, 4, or 8
ret Yerip = Mem|(%rsp], %rsp = Yorsp + 8 movq 0x100(Yrex,rax,4), Yrdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10

Carnegie Mellon

Control transfer
cmpq Src2, Srcl Sets CCs Srel Sre2

testq Src2, Srcl Sets CCs Srcl & Src2 | Srcl |S %rl 0 SrCZ |S %rg

jmp label jump ,

J8-2absl Jurup eqal m Set CCs based on Srcl <op>
jne label jump not equal

js label jump negative o=

jns label jump non-negative SrC2 4 Where <op> * >

jg label jump greater (signed >)

jge label jump greater or equal (signed =)

cmpl %r9, %rl0
jg 8675309

m Sowejumpif: $rl0 > %$r9
m “If the value of $x10 is greater than the value in $x9, then

jump to 8675309”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Reading Assembly: Jumps

Instruction Condition Description

jmp 1 Unconditional Jump
je/jz ZF Equal/Zero
jne/jnz ~ZF Not Equal/Not Zero
js SF Negative

jns ~SF Non-negative

jg ~ (SFAOF) &~ZF Greater (Signed)

jge ~ (SFAOF) Greater or Equal (Signed)
jl (SF~OF) Less (Signed)

jle (SFAOF) | ZF Less or Equal (Signed)
ja ~CF & ~ZF Above (unsigned)

jb CF Below (unsigned)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Reading Assembly: Jumps

cmp $0x15213, %rl2 If $rl2 >= 0x15213, then
jge deadbeef jump to Oxdeadbeef.

If the unsigned value in $xrdi is

cmp 3rax, %srdi
greater than or equal to the

jae 15213b , _ .
unsigned value in $rax, jump
to 0x15213b.

test %r8, %r8 If $x8 is not zero, jump to the

jnz *%rsi address stored in $rsi.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Preview: Calling Conventions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Calling Conventions: Passing Data

m How can we pass arguments to a procedure?

$rdi
$rsi o
srdx A
$rcx cooe
$r8 Arg 8
$r9 Arg 7
First 6 arguments passed in Remaining arguments put at
registers. the end of the caller’s stack
frame.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Calling Conventions: Passing Data

m How can we access the return value?

$rax

Return value placed in %rax
by convention.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Bomblab

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Bomblab: Premise

m Dr. Evil has planted binary bombs on our shark machines!
m Your task: defuse your bomb by passing the correct strings
on stdin.
m You get:
m A Csource file for the main program
m An executable (no C source code for the phases!)
m Have to reverse engineer the bomb using only gdb and the

assembly code!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Bomblab: Getting Started

m Download your bomb from Autolab

m You must use the Shark Machines to extract (untar) and

work on your Bomb.
B Runautolab setup
m 6 Progressively Harder Phases
m Enter the correct string to move on to the next phase

m Read the write up! It has an entire page dedicated to hints!

Hints (Please read this!)

There are many ways of defusing your bomb. You can examine it in great detail without ever running the
program, and figure out exactly what it does. This is a useful technique, but it not always easy to do. You
can also run it under a debugger, watch what it does step by step, and use this information to defuse it. This
is probably the fastest way of defusing it.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Bomblab: Detonating Your Bomb

m Solving a phase automatically notifies Autolab and applies
points to your score.

m If you let the bomb explode, Autolab will deduct 0.5 points
each time.

m Do not:
m Use gdb to jump between phases
m Solve the phases out of order
m Tamper with the bomb

m Otherwise the bomb will explode!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Bomblab: Defuse Kit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Defuse Kit: gdb

m gdb = GNU Debugger

m Fully-featured debugger:
m For bomblab, lets you trace the execution of assembly
m Useful for future labs, and well beyond 213.

m Expand your debugging toolkit beyond print£!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Defuse Kit: gdb

Examining Program State

print (p)
(gdb) print /d 0x3béd

print $rdi $2 = 15213

Print contents of %rdi Print with format

info
info registers

Print all register contents

x (For eXamine)

B X /[num] [size] [format]

m x /s Ox.. Examine contents of address as a string

m x /64bx O0x.. View 64 bytes starting at the given

address in Hex Format

29

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

GDB Demo

If you want to follow along... (you’ll also need this for the activity)

m Download today’s activity handout from the Schedule page.

wget http://www.cs.cmu.edu/~213/activities/s25-rec2. tar
tar xvpf s25-rec2.tar

cd s25-rec2
make

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Defuse Kit: Getting the Assembly

m Use objdump to get assembly code from your executable:

m Then open and annotate in your favorite text editor!

objdump -d actl > actl.asm For syntax highlighting!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Defuse Kit: Identifying inputs to main ()

m Weseeint main(int argc, char** argv)
B mainis also a function - we follow calling conventions
B argc => 3rdi, argv => 3rsi

m Note that argv is a pointer type (array of arguments),
meaning we must dereference to access the arguments!

m Look out for addressing mode around $rsi

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Defuse Kit: Figuring out Input Format

m Phases use sscanf to parse input strings:

char *input string = "123, 456";
int a, b;
sscanf (input string, "%d, %d", &a, &b);

0x0000000000401ab4 <+15>: mov -0x8 ($rsi, %$rdi,8) ,%rdi

0x0000000000401ac3 <+30>: lea 0xb453a (%rip), %rsi # 0x4b6004

0x0000000000401laca <+37>: $0x0, %eax
0x0000000000401act <+42>: 0x40bal0 <_ isoc99 sscanf>

We know that the format string is the 0x4b6004 is the address of that
second argument ($rsi) string!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Defuse Kit: Figuring out Input Format

0x0000000000401ac3 <+30>: lea 0xb453a (%rip), %$rsi # 0x4b6004
0x0000000000401aca <+37>: mov $0x0, %eax
0x0000000000401acft <+42>: call 0x40bal0 < isoc99 sscanf>

m If we can examine that memory address, we can recover the

format string!

Examine memory
address as a string.

m Enter gdb:

(gdb) break main
Breakpoint 1 at 0x4f1za5
(gdb) x /s 0x4b6004
0x4b6004: "%d, 3%d"

We need two integers!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Warning: TUl Mode

TUI Mode

m Isvery cool (can view assembly alongside gdb prompt).
m But can unexpectedly explode your bomb.

m You will not get these points back.

m Can use vim/VSCode splitting instead.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

GDB Activity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

GDB Activity

m View the assembly and source code for act2

m Our objective is to match the source code to the assembly,
identifying which sections correspond to each other!

m Get into groups of 3-4 and discuss together on how to
interpret the assembly!

m If you understand the correlation fully along with the control

flow in the assembly, feel free to try and solve the puzzle.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

