
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
VM + Malloc Lab (Checkpoint)

Your TAs

Friday, February 28th

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders
■ cachelab was due yesterday.

■ malloclab was released yesterday:

○ Checkpoint: March 18th

○ Final: March 25th

■ Written 6 is due March 12th

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Agenda
■ Virtual Memory

■ Activity: Analyzing TLBs with real-world examples

■ Review: Programming in C

■ malloc concepts

■ Strategy Guide

○ Debugging and Suggested Roadmap

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory - Review

Physical Addressing

Memory address refers to an exact location in
memory—only used in simple systems

Virtual Addressing

Memory address refers to a process-specific
address, mapped to physical memory via the
hardware memory management unit.

One of the Great Ideas Of Computer Science™

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory - Page Table

■ Virtual addresses are mapped
to physical addresses in the
page table. Each entry is called
a page table entry.

■ Pages are in memory, like a
cache. If they are not available
in memory, we have a page
miss.

■ A page miss causes a page
fault, which causes the OS to
fetch the page from disk and
evict a page from DRAM.

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory - Multi-Level Page Tables

■ The size of a page table quickly gets out of control when we

have to address large addresses space.

■ The solution is to nest page tables. The VPO/PPO acts as the

pseudo-”block offset”

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example - Multi-Level Page Table

■ Consider a system with 32 bit virtual address space and a 24

bit physical address space. Page Size is 4KB. Assume the size

of entries in the Page Table is 4 bytes.

■ Question of interest : How would we map the virtual address

space? Is a single-level page table enough? Do we need more

levels? Let’s dive into it….

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Address Decomp.)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 1: How many bits in the virtual/physical address for

page offset?

■ VPO = PPO = log
2
(page size) = 12 bits

20 bits 12 bits

to be discussed in later slides offset (VPO = PPO)

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Mapping PTEs to VA)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 2: How many pages are required to map the entire

VA space?

■ # of pages for VA space = size of VA space/size of a page

○ 2^32/2^12 = 2^20 PTEs

■ Note that # of pages for VA space = # of PTEs for VA space

○ There is an one-to-one mapping between PTEs and

virtual pages!

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Now let’s talk about how we can extend this to a multi-level

page table

■ So far, we’ve discussed preliminary values that tell us how to

map onto the entire VA space.

○ General/“Single-Level” Ideas

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (PTEs in Pages)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 3: How many PTEs (page table entries) fit inside a

single page?

■ # of PTEs in a page = size of a page / size of a PTE

○ 4KB/4B = 2^12/2^2 = 2^10 = 1024

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 4: How many pages do we need to cover the single

level page table?

■ # of pages for Single Level = # of PTEs to map VA space/# of

PTEs in a page

○ 2^20/2^10 = 2^10 pages

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 5: How many pages do we need to represent the

outer level page table?

■ # of pages for Outer Level = # of pages for Single Level / #

PTEs in a page

○ 2^10/2^10 = 1 page

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ This is what our final multi-level page table would look like

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Without the outer level, we would have to store the entirety

of the single-level page table.

○ Oops that’s (2^20 PTEs x 4 bytes) = 2^22 bytes = 4096 KB

○ Can also think of as (2^10 Pages x 4 KB)

■ Great, now we’ve setup a 2-level page table, let’s talk about

the benefits we get.

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Now we have two-levels. Suppose we have a single memory

access (assuming the page table was empty at first). How

many pages would be required?

■ Entire outer level (there is only one page)

■ 1 PTE needed from outer level => 1 page in inner level

■ Total 2 pages! We saved a huge chunk of space.

○ 2 pages = 8 KB <<<<<<< 4096 KB

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: Analyzing TLBs with Real
World Examples

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: What is a TLB?
■ The TLB (or Translation Lookaside Buffer) is a cache that

stores translations from virtual to physical addresses.

■ Upon a TLB hit, we do not have to perform a page walk to

perform translations!

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB is a Cache!
■ We can make similar analysis of TLBs as we did with caches

■ TLBs are usually set associative

■ Accesses to memory blocks –> Accesses to pages

■ This changes how we think about locality and misses

○ But the general ideas still carry over from cachelab!

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Analyzing TLB Benefits
■ We focus on 3 main levels of analysis:

1. Locality of Access

2. Size of Working Set

3. Frequency of Context Switches

■ Before we move onto the activity, let’s quickly introduce each,

drawing parallels to cache analysis tools!

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality of Access
■ Suppose a workload has good locality, what are the benefits

we get from a TLB?

■ Good locality indicates reuse in memory in the same

contiguous region in memory, or the same page

■ Memory accesses to the same page benefit from previously

stored translations!

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Size of Working Set
■ The working set of a program is the set of accessed, active

virtual pages.

■ What can happen if our working set is too large?

■ A large working set results in thrashing, or the constant

swapping of pages.

■ For the TLB, this means a previously stored translation for a

page will likely be invalid as the page has been swapped out.

○ Similar to capacity miss?

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes
■ Before context switches, let's talk about processes

■ A process is a task that is assigned its own virtual address

space and page tables

○ More details on this later in the semester!

Note: For the purpose of this recitation, we over-simplify the

details of how things truly work… Take with a grain of salt

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Context Switches
■ The process of switching control from one process to another

■ This means we are now working with a new virtual address

space, and thus a new set of translations!

■ What happens to entries in the TLB when we context switch?

○ Think of them as evictions - where accesses in the current

process will replace the old, now invalid translations

○ Note this is not what happens in the real world, but for the

purpose of this recitation, we present it this way.

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity
■ In this activity, we’ll be using real world scenarios, along with

the three analysis tools, to reason about TLB benefits!

■ Split into groups of 3-4 people and randomly choose from the

numbers 1 or 2 :)

○ This will determine which scenario you analyze

■ Please download the student handout from the course

website!

https://www.cs.cmu.edu/afs/cs/academic/class/15213-s25/www/activities/s25-rec7-handout.pdf

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity
■ Scenario 1: We are running a large-data computation task,

processing data on the magnitude of terabytes. Suppose we

have a reasonably good, regular access pattern to data, as

well as a reasonable page size (eg. 4KB)

■ Scenario 2: We are a virtualized cloud environment like AWS,

supporting multiple virtual machines at the same time (think

of virtual machines as its own process). Assume all of these

processes map onto the same physical machine.

■ More information in the student handout!

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity
■ Here are some main questions to answer:

1. Given the features of the workload, what implications

does it have on the TLB? (use the 3 analysis tools)

2. Given these implications, what are some design changes

that might help to gain the benefits from TLB or avoid the

pitfalls of the TLB?

■ eg) cache features, page sizes, ect…

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Programming in C

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Programming in C: Unions

■ Store potentially different data types in the same region of

memory.

■ Specifies multiple ways to interpret data at the same memory

location.

union temp {
int i;
char c;

};

int i;

4 bytes

c

4 bytes

Padding

Either Or

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Programming in C: Zero-Length Arrays

■ Allowed in GNU C as an extension.

■ A zero-length array must be the last element in a struct.

■ sizeof(payload)always returns 0

■ But, the payload itself can have variable length

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Concepts

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What does malloc do?
■ Given a bunch of heap space,

manage it effectively:
1. Use heap space to organize

blocks and information we
store about blocks in a
structured way.

2. Using that structure, decide
where to allocate new
blocks.

3. Update structure correctly
when we allocate or free,
maintaining heap invariants.

■ …and do so in a way that
maximizes throughput and
utilization!

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Throughput/Utilization
■ What is throughput and utilization?

■ Throughput is the average number of operations per second

■ Utilization is peak ratio between the total amount of memory

requested and the total amount of heap space allocated

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists

■ Implicit lists traverse the heap through block lengths.

■ What implication does this have on throughput/utilization?

■ Since we have to iterate through all blocks, it results in

terrible throughput

16 24 24 16 8

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Coalescing
■ Coalescing handles the case of consecutive free blocks -

merging them to create a larger free block.

■ What implication does this have on throughput/utilization?

■ We get better utilization because we reduce external

fragmentation

○ Recall external fragmentation occurs when there is

enough aggregate heap memory, but no single free block

is large enough!

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Lists

■ Explicit lists traverse free blocks using pointers

■ What implication does this have on throughput/utilization?

■ We should see a great improvement in throughput, as we no

longer have to iterate through ALL blocks to find a free block.

■ However, pointers take space…

16 24 24 16 8

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated Lists

■ We maintain multiple free blocks, based on sizes

○ Note that the size classes used above are just an example

■ What implication does this have on throughput/utilization?

■ Improves throughput, as we are guaranteed to find a large

enough block faster!

16

32 - 48

64-inf

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

static block_t *coalesce_block(block_t *block) {
 // TODO: delete or replace this comment once you're done.

return block;
}

malloc Starter Code

■ Starter code: working implementation of implicit free list with

boundary tags.

■ However, it does not implement coalescing!

■ You will need to implement the features mentioned

previously

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Starter Code

Very slow!

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Checkpoint Targets: Performance

■ We have motivated explicit lists and seg lists as a throughput

optimization

■ Could there be utilization improvements too?

○ Segregated lists size classes?

○ Fit Algorithms?

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design Choices

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design Choices
■ Though we’ll recommend a strategy later, there are many

ways to optimize your allocator.

■ What kind of implementation to use?

○ Implicit list, explicit, segregated, binary tree, etc.

■ What fit algorithm to use?

○ Best Fit?

○ First Fit? Next Fit?

○ Which is faster? Which gets better utilization?

■ There are many different ways to get a full score!

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strategy Guide: Debugging

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

In a perfect world…
■ Setting up blocks, metadata, lists, etc. (500 LoC)

■ Finding and allocating the right blocks (500 LoC)

■ Updating heap structure on frees (500 LoC)

=

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

In reality…
■ Setting up blocks, metadata, lists, etc. (500 LoC)

■ Finding and allocating the right blocks (500 LoC)

■ Updating heap structure on frees (500 LoC)

■ + Some bug hiding in those 1500 LoC…

=

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Strategies
■ Use gdb!

■ Write a heap checker!

○ Checks heap invariants

○ Call around major operations to make sure heap

invariants aren’t violated.

■ Assertions (like 122!):

○ dbg_assert(...)

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Errors
■ Garbled Bytes

○ This means you’re overwriting data in an allocated block.

■ Overlapping Payloads

○ This means you have unique blocks whose payloads

overlap in memory

■ segfault!

○ This means something is accessing invalid memory.

■ For all of the above, step through with gdb to see where

things start to break!

○ Note: to run assert statements, you’ll need to run

./mdriver-dbg rather than ./mdriver.

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using gdb: Breakpoints and Watchpoints
■ Breakpoints:

○ break coalesce_block

○ break mm.c:213

○ break find_fit if size == 24

■ Watchpoints:

○ w block = 0x8000010

○ w *0x15213

○ rwatch <thing> – stop on reading a memory location

○ awatch <thing> – stop on any access to the location

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using gdb: Inspecting Frames

■ backtrace - print call stack up until current function

■ frame 1: switch to mm_malloc’s stack frame

○ Can then inspect local variables.

(gdb) backtrace #0 find_fit (...)
#1 mm_malloc (...)
#2 0x0000000000403352 in eval_mm_valid (...) #3 run_tests (...)
#4 0x0000000000403c39 in main (...)

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing a Heap Checker
■ Heap checker: just a function that loops over your heap/data

structures and makes sure invariants are satisfied.

○ Returns true if and only if heap is well-formed.

■ Critical for debugging!

○ Update when your implementation changes.

■ Worry about correctness, not efficiency.

○ But do avoid printing excessively.

■ For Checkpoint, you will be graded on the quality of your heap

checker.

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Invariants
■ Heap invariants are things that should always be true about

the heap/your data structures between calls to

malloc/free.

■ Can you come up with some invariants?

○ Block Level: what should be true about individual blocks?

○ List Level: what should be true about your free list(s)?

○ Heap Level: what should be true about your blocks in

relation to the heap?

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Invariants: Block Level
■ Header and footer store size/allocation information. Do they

match?

■ Payload area is 16-byte aligned.

■ Size is valid.

■ No contiguous free blocks (unless you do deferred

coalescing).

Disclaimer:
Non-Exhaustive

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Invariants: List Level
■ Assuming a doubly-linked explicit list:

○ prev/next pointers are consistent

○ No allocated blocks in free list

○ No cycles!

■ Segregated lists:

○ Common bug: forgetting to move blocks between buckets

when their sizes change.

○ Invariant: each segregated list contains only blocks in the

appropriate size class.

Disclaimer:
Non-Exhaustive

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Invariants: Heap Level
■ All blocks are between heap boundaries.

■ “Sentinel” Blocks store correct information.

○ “Dummy” footer (at the start of the heap) and “dummy”

header (at the end of the heap) prevent accidental

coalescing.

Disclaimer:
Non-Exhaustive

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strategy Guide: Suggested Roadmap

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Suggested Roadmap
■ First: read the write-up!

○ “Roadmap to Success” section

0. Start writing your heap checker!

1. Implement coalesce_block() first.

2. Implement an explicit free list.

3. Implement segregated lists!

4. Further optimizations (in this order)

○ Footer Removal in allocated blocks

○ Decrease minimum block size

○ Compress Headers (hard)

Checkpoint

Final

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Note: Using git
■ As we have seen:

○ This is a difficult lab.

○ You will experiment with different optimizations, with

varying effects on performance and thus, your score.

■ Make sure to regularly checkpoint your code with commits,

and push it to GitHub!

○ Don’t want to lose your progress.

○ It will be helpful to include performance metrics in your

commit messages.

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Wrapping Up
■ malloc due dates:

○ Checkpoint: March 18th

○ Final: March 25th

○ Start early!

■ Written 6 due March 12th

■ cachelab: Watch your inbox

for an email from your code

review TA!

■ Have a good Spring Break :-)

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The End

