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Reminders
■ cachelab was due yesterday.

■ malloclab was released yesterday:

○ Checkpoint: March 18th

○ Final: March 25th

■ Written 6 is due March 12th
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Agenda
■ Virtual Memory

■ Activity: Analyzing TLBs with real-world examples

■ Review: Programming in C

■ malloc concepts

■ Strategy Guide

○ Debugging and Suggested Roadmap
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Virtual Memory - Review

Physical Addressing

Memory address refers to an exact location in 
memory—only used in simple systems

Virtual Addressing

Memory address refers to a process-specific 
address, mapped to physical memory via the 
hardware memory management unit.

One of the Great Ideas Of Computer Science™
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Virtual Memory - Page Table

■ Virtual addresses are mapped 
to physical addresses in the 
page table. Each entry is called 
a page table entry. 

■ Pages are in memory, like a 
cache. If they are not available 
in memory, we have a page 
miss.

■ A page miss causes a page 
fault, which causes the OS to 
fetch the page from disk and 
evict a page from DRAM.
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Virtual Memory - Multi-Level Page Tables

■ The size of a page table quickly gets out of control when we 

have to address large addresses space.

■ The solution is to nest page tables. The VPO/PPO acts as the 

pseudo-”block offset”
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Example - Multi-Level Page Table

■ Consider a system with 32 bit virtual address space and a 24 

bit physical address space. Page Size is 4KB. Assume the size 

of entries in the Page Table is 4 bytes.

■ Question of interest : How would we map the virtual address 

space? Is a single-level page table enough? Do we need more 

levels? Let’s dive into it….
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Example (Address Decomp.)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 1: How many bits in the virtual/physical address for 

page offset?

■ VPO = PPO = log
2
(page size) = 12 bits

20 bits 12 bits

to be discussed in later slides offset (VPO = PPO)
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Example (Mapping PTEs to VA)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 2: How many pages are required to map the entire 

VA space?

■ # of pages for VA space = size of VA space/size of a page

○ 2^32/2^12 = 2^20 PTEs

■ Note that # of pages for VA space = # of PTEs for VA space

○ There is an one-to-one mapping between PTEs and 

virtual pages!
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Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Now let’s talk about how we can extend this to a multi-level 

page table

■ So far, we’ve discussed preliminary values that tell us how to 

map onto the entire VA space.

○ General/“Single-Level” Ideas
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Example (PTEs in Pages)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 3: How many PTEs (page table entries) fit inside a 

single page?

■ # of PTEs in a page = size of a page / size of a PTE

○ 4KB/4B = 2^12/2^2 = 2^10 = 1024
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Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 4: How many pages do we need to cover the single 

level page table?

■ # of pages for Single Level = # of PTEs to map VA space/# of 

PTEs in a page

○ 2^20/2^10 = 2^10 pages
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Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 5: How many pages do we need to represent the 

outer level page table?

■ # of pages for Outer Level = # of pages for Single Level / # 

PTEs in a page

○ 2^10/2^10 = 1 page
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Example (Multi-Level Storage)

■ This is what our final multi-level page table would look like
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Example (Multi-Level Storage)

■ Without the outer level, we would have to store the entirety 

of the single-level page table.

○ Oops that’s (2^20 PTEs x 4 bytes) = 2^22 bytes = 4096 KB

○ Can also think of as (2^10 Pages x 4 KB)

■ Great, now we’ve setup a 2-level page table, let’s talk about 

the benefits we get. 
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Example (Multi-Level Storage)

■ Now we have two-levels. Suppose we have a single memory 

access (assuming the page table was empty at first). How 

many pages would be required?

■ Entire outer level (there is only one page)

■ 1 PTE needed from outer level => 1 page in inner level

■ Total 2 pages! We saved a huge chunk of space.

○ 2 pages = 8 KB <<<<<<< 4096 KB
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Activity: Analyzing TLBs with Real 
World Examples
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Review: What is a TLB?
■ The TLB (or Translation Lookaside Buffer) is a cache that 

stores translations from virtual to physical addresses.

■ Upon a TLB hit, we do not have to perform a page walk to 

perform translations!
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TLB is a Cache!
■ We can make similar analysis of TLBs as we did with caches

■ TLBs are usually set associative

■ Accesses to memory blocks –> Accesses to pages

■ This changes how we think about locality and misses

○ But the general ideas still carry over from cachelab!
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Analyzing TLB Benefits
■ We focus on 3 main levels of analysis:

1. Locality of Access

2. Size of Working Set

3. Frequency of Context Switches

■ Before we move onto the activity, let’s quickly introduce each, 

drawing parallels to cache analysis tools!
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Locality of Access
■ Suppose a workload has good locality, what are the benefits 

we get from a TLB?

■ Good locality indicates reuse in memory in the same 

contiguous region in memory, or the same page

■ Memory accesses to the same page benefit from previously 

stored translations!
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Size of Working Set
■ The working set of a program is the set of accessed, active 

virtual pages.

■ What can happen if our working set is too large? 

■ A large working set results in thrashing, or the constant 

swapping of pages. 

■ For the TLB, this means a previously stored translation for a 

page will likely be invalid as the page has been swapped out.

○ Similar to capacity miss?
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Processes
■ Before context switches, let's talk about processes

■ A process is a task that is assigned its own virtual address 

space and page tables

○ More details on this later in the semester!

Note: For the purpose of this recitation, we over-simplify the 

details of how things truly work… Take with a grain of salt
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Context Switches 
■ The process of switching control from one process to another

■ This means we are now working with a new virtual address 

space, and thus a new set of translations!

■ What happens to entries in the TLB when we context switch?

○ Think of them as evictions - where accesses in the current 

process will replace the old, now invalid translations

○ Note this is not what happens in the real world, but for the 

purpose of this recitation, we present it this way.
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Activity
■ In this activity, we’ll be using real world scenarios, along with 

the three analysis tools, to reason about TLB benefits!

■ Split into groups of 3-4 people and randomly choose from the 

numbers 1 or 2 :) 

○ This will determine which scenario you analyze

■ Please download the student handout from the course 

website!

https://www.cs.cmu.edu/afs/cs/academic/class/15213-s25/www/activities/s25-rec7-handout.pdf
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Activity
■ Scenario 1: We are running a large-data computation task, 

processing data on the magnitude of terabytes. Suppose we 

have a reasonably good, regular access pattern to data, as 

well as a reasonable page size (eg. 4KB)

■ Scenario 2: We are a virtualized cloud environment like AWS, 

supporting multiple virtual machines at the same time (think 

of virtual machines as its own process). Assume all of these 

processes map onto the same physical machine.

■ More information in the student handout!
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Activity
■ Here are some main questions to answer:

1. Given the features of the workload, what implications 

does it have on the TLB? (use the 3 analysis tools)

2. Given these implications, what are some design changes 

that might help to gain the benefits from TLB or avoid the 

pitfalls of the TLB?

■ eg) cache features, page sizes, ect…
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Review: Programming in C
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Programming in C: Unions

■ Store potentially different data types in the same region of 

memory.

■ Specifies multiple ways to interpret data at the same memory 

location.

union temp {
int i;
char c;

};

int i;

4 bytes

c

4 bytes

Padding

Either Or
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Programming in C: Zero-Length Arrays

■ Allowed in GNU C as an extension.

■ A zero-length array must be the last element in a struct.

■ sizeof(payload)always returns 0

■ But, the payload itself can have variable length
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malloc Concepts
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What does malloc do?
■ Given a bunch of heap space, 

manage it effectively:
1. Use heap space to organize 

blocks and information we 
store about blocks in a 
structured way.

2. Using that structure, decide 
where to allocate new 
blocks.

3.  Update structure correctly 
when we allocate or free, 
maintaining heap invariants.

■ …and do so in a way that 
maximizes throughput and 
utilization!
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Throughput/Utilization
■ What is throughput and utilization?

■ Throughput is the average number of operations per second

■ Utilization is peak ratio between the total amount of memory 

requested and the total amount of heap space allocated
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Implicit Lists

■ Implicit lists traverse the heap through block lengths.

■ What implication does this have on throughput/utilization?

■ Since we have to iterate through all blocks, it results in 

terrible throughput

16 24 24 16 8
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Coalescing
■ Coalescing handles the case of consecutive free blocks - 

merging them to create a larger free block.

■ What implication does this have on throughput/utilization?

■ We get better utilization because we reduce external 

fragmentation

○ Recall external fragmentation occurs when there is 

enough aggregate heap memory, but no single free block 

is large enough!
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Explicit Lists

■ Explicit lists traverse free blocks using pointers 

■ What implication does this have on throughput/utilization?

■ We should see a great improvement in throughput, as we no 

longer have to iterate through ALL blocks to find a free block.

■ However, pointers take space…

16 24 24 16 8
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Segregated Lists

■ We maintain multiple free blocks, based on sizes

○ Note that the size classes used above are just an example

■ What implication does this have on throughput/utilization?

■ Improves throughput, as we are guaranteed to find a large 

enough block faster!

16

32 - 48

64-inf
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static block_t *coalesce_block(block_t *block) {
 // TODO: delete or replace this comment once you're done.

return block;
}

malloc Starter Code

■ Starter code: working implementation of implicit free list with 

boundary tags.

■ However, it does not implement coalescing!

■ You will need to implement the features mentioned 

previously
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malloc Starter Code

Very slow!
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Checkpoint Targets: Performance

■ We have motivated explicit lists and seg lists as a throughput 

optimization

■ Could there be utilization improvements too?

○ Segregated lists size classes?

○ Fit Algorithms?
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Design Choices
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Design Choices
■ Though we’ll recommend a strategy later, there are many 

ways to optimize your allocator.

■ What kind of implementation to use?

○ Implicit list, explicit, segregated, binary tree, etc.

■ What fit algorithm to use?

○ Best Fit?

○ First Fit? Next Fit?

○ Which is faster? Which gets better utilization?

■ There are many different ways to get a full score!
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Strategy Guide: Debugging
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In a perfect world…
■ Setting up blocks, metadata, lists, etc. (500 LoC)

■ Finding and allocating the right blocks (500 LoC)

■ Updating heap structure on frees (500 LoC)

=
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In reality…
■ Setting up blocks, metadata, lists, etc. (500 LoC)

■ Finding and allocating the right blocks (500 LoC)

■ Updating heap structure on frees (500 LoC)

■ + Some bug hiding in those 1500 LoC…

=
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Debugging Strategies
■ Use gdb!

■ Write a heap checker!

○ Checks heap invariants

○ Call around major operations to make sure heap 

invariants aren’t violated.

■ Assertions (like 122!):

○ dbg_assert(...)
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Common Errors
■ Garbled Bytes

○ This means you’re overwriting data in an allocated block.

■ Overlapping Payloads

○ This means you have unique blocks whose payloads 

overlap in memory

■ segfault!

○ This means something is accessing invalid memory.

■ For all of the above, step through with gdb to see where 

things start to break!

○ Note: to run assert statements, you’ll need to run 

./mdriver-dbg rather than ./mdriver.



Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using gdb: Breakpoints and Watchpoints
■ Breakpoints:

○ break coalesce_block

○ break mm.c:213

○ break find_fit if size == 24

■ Watchpoints:

○ w block = 0x8000010

○ w *0x15213

○ rwatch <thing> – stop on reading a memory location

○ awatch <thing> – stop on any access to the location
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Using gdb: Inspecting Frames

■ backtrace - print call stack up until current function

■ frame 1: switch to mm_malloc’s stack frame

○ Can then inspect local variables.

(gdb) backtrace  #0 find_fit (...)
#1 mm_malloc (...)
#2 0x0000000000403352 in eval_mm_valid (...)  #3 run_tests (...)
#4 0x0000000000403c39 in main (...)



Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing a Heap Checker
■ Heap checker: just a function that loops over your heap/data 

structures and makes sure invariants are satisfied.

○ Returns true if and only if heap is well-formed.

■ Critical for debugging!

○ Update when your implementation changes.

■ Worry about correctness, not efficiency.

○ But do avoid printing excessively.

■ For Checkpoint, you will be graded on the quality of your heap 

checker.
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Heap Invariants
■ Heap invariants are things that should always be true about 

the heap/your data structures between calls to 

malloc/free.

■ Can you come up with some invariants?

○ Block Level: what should be true about individual blocks?

○ List Level: what should be true about your free list(s)?

○ Heap Level: what should be true about your blocks in 

relation to the heap?
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Heap Invariants: Block Level
■ Header and footer store size/allocation information. Do they 

match?

■ Payload area is 16-byte aligned.

■ Size is valid.

■ No contiguous free blocks (unless you do deferred 

coalescing).

Disclaimer: 
Non-Exhaustive
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Heap Invariants: List Level
■ Assuming a doubly-linked explicit list:

○ prev/next pointers are consistent

○ No allocated blocks in free list

○ No cycles!

■ Segregated lists:

○ Common bug: forgetting to move blocks between buckets 

when their sizes change.

○ Invariant: each segregated list contains only blocks in the 

appropriate size class.

Disclaimer: 
Non-Exhaustive
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Heap Invariants: Heap Level
■ All blocks are between heap boundaries.

■ “Sentinel” Blocks store correct information.

○ “Dummy” footer (at the start of the heap) and “dummy” 

header (at the end of the heap) prevent accidental 

coalescing.

Disclaimer: 
Non-Exhaustive
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Strategy Guide: Suggested Roadmap
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Suggested Roadmap
■ First: read the write-up!

○ “Roadmap to Success” section

0. Start writing your heap checker!

1. Implement coalesce_block() first.

2. Implement an explicit free list.

3. Implement segregated lists!

4. Further optimizations (in this order)

○ Footer Removal in allocated blocks

○ Decrease minimum block size

○ Compress Headers (hard)

Checkpoint

Final
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Note: Using git
■ As we have seen:

○ This is a difficult lab.

○ You will experiment with different optimizations, with 

varying effects on performance and thus, your score.

■ Make sure to regularly checkpoint your code with commits, 

and push it to GitHub!

○ Don’t want to lose your progress.

○ It will be helpful to include performance metrics in your 

commit messages.
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Wrapping Up
■ malloc due dates:

○ Checkpoint: March 18th

○ Final: March 25th

○ Start early!

■ Written 6 due March 12th

■ cachelab: Watch your inbox 

for an email from your code 

review TA!

■ Have a good Spring Break :-)
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The End


