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Reminders

m cachelab was due yesterday.

m malloclab was released yesterday:
o Checkpoint: March 18th
o Final: March 25th

m Written 6 is due March 12th
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Agenda

m Virtual Memory
m Activity: Analyzing TLBs with real-world examples

m Review: Programmingin C
m malloc concepts
m Strategy Guide

o Debugging and Suggested Roadmap
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Virtual Memory - Review

Physical Addressing Virtual Addressing

Main memory

0: Main memory

1: . 0:

Physical address g: CPU Chip ;

cPU (ZA) 4 Virtua(:lzt)idress Physic(a; :)ddress 3

5 CPU MMU —4> 4:

6 4100 5:
7: 1 6: }

8: 7:

i 8: .
Data word
Data word

Memory address refers to an exact location in Memory address refers to a process-specific
memory—only used in simple systems address, mapped to physical memory via the

hardware memory management unit.

One of the Great Ideas Of Computer Science™
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Virtual Memory - Page Table

m Virtual addresses are mapped
to physical addresses in the
page table. Each entry is called
a page table entry.

m Pages are in memory, like a
cache. If they are not available
in memory, we have a page
miss.

m A page miss causes a page
fault, which causes the OS to
fetch the page from disk and
evict a page from DRAM.
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Virtual Memory - Multi-Level Page Tables

m The size of a page table quickly gets out of control when we
have to address large addresses space.

m The solution is to nest page tables. The VPO/PPO acts as the

pseudo-"block offset”

Level 1 Level 2 Virtual Here, addresses
page table page tables memory increase from
o top to bottom
Page table mro — [_Preo
base register VP 1023 . 2K allocated VM pages
(PTBR) PTE1 VP 1024 for code and data
VIRTUAL ADDRESS PTE 2 (null) PTE 1023
n-1 p-1 0
PTE 3 (null)
[pven1 [, wven2 [ . VPN k VPO vp2047 |
PTE 4 (null) PTEO N
the Level 1 a Level 2 a Level k PTE 5 (null)
page table | page table page table PTE 6 (null) pe—p—
—> J _, """ PTE 7 (null) Gap > 6K unallocated VM pages
> =
L — PTE8

(1K - 9) PTEs J

null PTEs 1023
PTE 1023
m-1 ] p-1 0 el ated 1023 unallocated pages
PPN | pro | pages

— PPN }—| 1023 null

VP 9215 1 allocated VM page
PHYSICAL ADDRESS for the stack

64 bit addresses, 8KB pages, 8-byte PTEs
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Example - Multi-Level Page Table

m Consider a system with 32 bit virtual address space and a 24
bit physical address space. Page Size is 4KB. Assume the size
of entries in the Page Table is 4 bytes.

m Question of interest : How would we map the virtual address

space? Is a single-level page table enough? Do we need more

levels? Let’s dive into it....
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Example (Address Decomp.)
m Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

m Question 1: How many bits in the virtual/physical address for

page offset?
m VPO = PPO = log,(page size) = 12 bits

20 bits 12 bits

to be discussed in later slides offset (VPO = PPO)
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Example (Mapping PTEs to VA)
m Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

m Question 2: How many pages are required to map the entire
VA space?
m # of pages for VA space = size of VA space/size of a page

o 2732/2712 =2"20 PTEs

m Note that # of pages for VA space = # of PTEs for VA space
o There is an one-to-one mapping between PTEs and

virtual pages!
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Example (Multi-Level Storage)
m Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

m So far, we've discussed preliminary values that tell us how to
map onto the entire VA space.

o General/“Single-Level” |deas

m Now let’s talk about how we can extend this to a multi-level

page table
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Example (PTEs in Pages)
m Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

m Question 3: How many PTEs (page table entries) fit inside a
single page?
m # of PTEs in a page = size of a page / size of a PTE
o 4KB/4B =2712/272 =2/710=1024

PTEO

PTE 1023 |
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Example (Multi-Level Storage)
m Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

m Question 4: How many pages do we need to cover the single

level page table?

m # of pages for Single Level = # of PTEs to map VA space/# of

PTEs in a page T T D
o 2720/2710 = 2710 pages /
- . frames
in
~w >memor‘y
Single-level
page table
J
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Example (Multi-Level Storage)
m Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

m Question 5: How many pages do we need to represent the

outer level page table?

m # of pages for Outer Level = # of pages for Single Level / #
PTEs in a page
o 2710/2710 =1 page
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Example (Multi-Level Storage)

Carnegie Mellon

m This is what our final multi-level page table would look like

A Virtual Address:

10-bi 10-bit s
PT1 PT2 offset

R AN X J
A .

7

>

Top-level
Page table

g

:\'\A

2nd -level tables
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Example (Multi-Level Storage)

m Great, now we've setup a 2-level page table, let’s talk about

the benefits we get.

m Without the outer level, we would have to store the entirety

of the single-level page table.
o QOops that’s (2220 PTEs x 4 bytes) = 2222 bytes = 4096 KB
o Can also think of as (2210 Pages x 4 KB)
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Example (Multi-Level Storage)

m Now we have two-levels. Suppose we have a single memory
access (assuming the page table was empty at first). How

many pages would be required?

m Entire outer level (there is only one page)
m 1PTE needed from outer level => 1 page in inner level
m Total 2 pages! We saved a huge chunk of space.

O 2 pages = 8 KB <<<<<<< 4096 KB
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Activity: Analyzing TLBs with Real
World Examples
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Review: What is a TLB?

m The TLB (or Translation Lookaside Buffer) is a cache that
stores translations from virtual to physical addresses.

m Upon a TLB hit, we do not have to perform a page walk to

perform translations!

CPU Chip

TLB
N

o PTE

VPN o

2
VA o~ PA =
CPU > MMU o N cache /
4 Memory
Data
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TLB is a Cache!

m We can make similar analysis of TLBs as we did with caches
m TLBs are usually set associative

m Accesses to memory blocks —> Accesses to pages

m This changes how we think about locality and misses

o But the general ideas still carry over from cachelab!
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Analyzing TLB Benefits
m We focus on 3 main levels of analysis:
1. Locality of Access
2. Size of Working Set
3. Frequency of Context Switches
m Before we move onto the activity, let’s quickly introduce each,

drawing parallels to cache analysis tools!
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Locality of Access

m Suppose a workload has good locality, what are the benefits
we get from a TLB?

m Good locality indicates reuse in memory in the same
contiguous region in memory, or the same page

m Memory accesses to the same page benefit from previously

stored translations!
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Size of Working Set

m The working set of a program is the set of accessed, active
virtual pages.

m What can happen if our working set is too large?

m A large working set results in thrashing, or the constant
swapping of pages.

m For the TLB, this means a previously stored translation for a
page will likely be invalid as the page has been swapped out.

o Similar to capacity miss?
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Processes

m Before context switches, let's talk about processes

m A process is a task that is assigned its own virtual address
space and page tables

o More details on this later in the semester!

Note: For the purpose of this recitation, we over-simplify the

details of how things truly work... Take with a grain of salt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23



Carnegie Mellon

Context Switches

m The process of switching control from one process to another

m This means we are now working with a new virtual address
space, and thus a new set of translations!

m What happens to entries in the TLB when we context switch?
o Think of them as evictions - where accesses in the current

process will replace the old, now invalid translations

o Note this is not what happens in the real world, but for the

purpose of this recitation, we present it this way.
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Activity

m In this activity, we’ll be using real world scenarios, along with
the three analysis tools, to reason about TLB benefits!

m Split into groups of 3-4 people and randomly choose from the
numbers 1 or 2 :)
o This will determine which scenario you analyze

m Please download the student handout from the course

website!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25


https://www.cs.cmu.edu/afs/cs/academic/class/15213-s25/www/activities/s25-rec7-handout.pdf

Carnegie Mellon

Activity

m Scenario 1: We are running a large-data computation task,
processing data on the magnitude of terabytes. Suppose we
have a reasonably good, regular access pattern to data, as
well as a reasonable page size (eg. 4KB)

m Scenario 2: We are a virtualized cloud environment like AWS,
supporting multiple virtual machines at the same time (think
of virtual machines as its own process). Assume all of these
processes map onto the same physical machine.

m More information in the student handout!
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Activity
m Here are some main questions to answer:
1. Given the features of the workload, what implications
does it have on the TLB? (use the 3 analysis tools)
2. Given these implications, what are some design changes
that might help to gain the benefits from TLB or avoid the
pitfalls of the TLB?

m eg) cache features, page sizes, ect...
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Review: Programming in C
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Programming in C: Unions

union temp { Either or
S g int i; c Padding
char c;

}; 4 bytes 4 bytes

m Store potentially different data types in the same region of

memory.

m Specifies multiple ways to interpret data at the same memory

location.
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Programming in C: Zero-Length Arrays

uint64_t word t;

typedef struct block
{

word t header;

unsigned char payload[0]; // Zero length array
} block t;

m Allowed in GNU C as an extension.
m A zero-length array must be the last element in a struct.
m sizeof (payload) always returns 0O

m But, the payload itself can have variable length
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malloc Concepts
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What doesmalloc do?

m  Given a bunch of heap space, _ Memory
manage it effectively: Kernel virtual memory ::2:'?;3:0
1. Use heap space to organize User stack |
blocks and information we \credted af L) I -

: tack
store about blocks in a : )
str.uctured way. ] Memory-mapped region for

2. Using that structure, decide shared libraries
where to allocate new
b/OCkS. T < “The break”
3. Update structure correctly Run-time heap
(created bymalloc)
when we allocate or free,
) .. ) ) Read/write segment Loaded
maintaining heap invariants. (dats bas) :Lom
. | e
m ...and dosoin a way that Read-only segment executable
P (.init,.text, .rodata) file
m§>.<|m!zes throughput and 0x400000
utilization! 0 Unused
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Throughput/Utilization

m What is throughput and utilization?

m Throughput is the average number of operations per second
m Utilization is peak ratio between the total amount of memory

requested and the total amount of heap space allocated
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Implicit Lists

24 16 8

\ 16

m Implicit lists traverse the heap through block lengths.
m What implication does this have on throughput/utilization?
m Since we have to iterate through all blocks, it results in

terrible throughput
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Coalescing

m Coalescing handles the case of consecutive free blocks -
merging them to create a larger free block.
m What implication does this have on throughput/utilization?
m We get better utilization because we reduce external
fragmentation
o Recall external fragmentation occurs when there is
enough aggregate heap memory, but no single free block

is large enough!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



Carnegie Mellon

Explicit Lists

BEETHEN 2 B 16 8

m Explicit lists traverse free blocks using pointers

m What implication does this have on throughput/utilization?

m We should see a great improvement in throughput, as we no
longer have to iterate through ALL blocks to find a free block.

m However, pointers take space...
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Segregated Lists

16 ] ] ]
32-48 —» .
64-inf

m We maintain multiple free blocks, based on sizes

o Note that the size classes used above are just an example
m What implication does this have on throughput/utilization?
m Improves throughput, as we are guaranteed to find a large

enough block faster!
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mal loc Starter Code

static block t *coalesce block(block t *block) {

// TODO: delete or replace this comment once you're done.
return block;

m Starter code: working implementation of implicit free list with

boundary tags.
m However, it does not implement coalescing!

m You will need to implement the features mentioned

previously
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mal loc Starter Code

[dalud@angelshark:~/.../15213/s17/malloclabcheckpoint-handout] $ ./mdriver -p
Found benchmark throughput 13690 for cpu type Intel(R)Xeon(R)CPUE5520@2.27GHz, benchmark checkpoint

hroughput targets: min=2618, max=11781, benchmark=13090

valid util msecs Kops trace

yes 78.4% .002 9632 ./traces/syn-array-short.rep
yes 13.4% .001 25777 ./traces/syn-struct-short.rep
yes 15.2% .001 24783 ./traces/syn-string-short.rep
yes 73.1% .001 19277 ./traces/syn-mix-short.rep
yes 16.0% .001 31192 ./traces/ngram-foxl.rep

yes 73.6% 757 .145 5237 ./traces/syn-mix-realloc.rep
yes 62.0% 5748 .925 1464 ./traces/bdd-aa4.rep

yes 58.3% 87830 1682.766 52 ./traces/bdd-aa32.rep

yes 58.0% 41080 410.385 100 ./traces/bdd-ma4.rep

yes 58.1% 115380 4636.711 25 ./traces/bdd-nq7.rep

yes 56.6% 20547 26.677 770 ./traces/cbit-abs.rep

yes 55.8% 95276 675.303 141 ./traces/cbit-parity.rep

yes 58.0% 89623 611.511 147 ./traces/cbit-satadd.rep

yes 49.6% 50583 185.382 273 ./traces/cbit-xyz.rep

yes 40.6% 32540 76.919 423 ./traces/ngram-gulliverl.rep
yes 42.4% 127912 1284.959 100 ./traces/ngram-gulliver2.rep
yes 39.4% 67012 338.591 198 ./traces/ngram-mobyl.rep

yes 38.6% 94828 701.305 135 ./traces/ngram-shakel.rep
yes 90.9% 80000 1455.891 55 ./traces/syn-array.rep

yes 88.0% 80000 915.167 87 ./traces/syn-mix.rep

yes 74.3% 80000 914.366 87 ./traces/syn-string.rep

yes 75.2% 80000 812.748 98 ./traces/syn-struct.rep

16 59.1% 1148359 14732.604 78

=
3
»
3
x
b 3
=
3
x
3
»
x
x
3
=
3

=t
D

Average utilization = 59.1%.  Average throughput = 78 Kops/sec
Checkpoint Perf index = 20.0| (util) + 0.0 (thru) = 20.0/100

Very slow!
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Checkpoint Targets: Performance

Optimization Utilization Throughput
Implicit List (Starter Code) 59% 10-100
Explicit Free List” mid-50s 1000-2500
Segregated Free Lists - 6000

m We have motivated explicit lists and seg lists as a throughput
optimization

m Could there be utilization improvements too?
o Segregated lists size classes?

o Fit Algorithms?
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Design Choices
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Design Choices
m Though we’ll recommend a strategy later, there are many
ways to optimize your allocator.
m What kind of implementation to use?
o Implicit list, explicit, segregated, binary tree, etc.
m What fit algorithm to use?
O Best Fit?
O First Fit? Next Fit?
o  Which is faster? Which gets better utilization?

m There are many different ways to get a full score!
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Strategy Guide: Debugging
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In a perfect world...

m Setting up blocks, metadata, lists, etc. (500 LoC)
m Finding and allocating the right blocks (500 LoC)

m Updating heap structure on frees (500 LoC)

[dalud@angelshark:~/.../15213/s17/malloclabcheckpoint-handout] $ ./mdriver
Found benchmark throughput 13056 for cpu type Intel(R)Xeon(R)CPUES5520@2.27(

Throughput targets: min=6528, max=11750, benchmark=13056
valad utal ops msecs Kops trace

yes 78.1% pAC) 0.004 5595 ./traces/syn-array-short.rep
yes 3.2% 20 0.004 5273 ./traces/syn-struct-short.rep

‘© yes 96.0% 80000 17.176 4658 ./traces/syn-array.rep

* yes 93.2% 80000 .154 12999 ./traces/syn-mix.rep

© yes 86.4% 80000 3.717 21521 ./traces/syn-string.rep

‘ yes 85.6% 80000 3.649 21924 ./traces/syn-struct.rep
16 74.2% 1148359 55.949 20525

Average utilization = 74.2%. Average throughput = 20525 Kops/sec
Perf index = 60.0 (util) + 40.0 (thru) = 100.06/100
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In reality...

m Setting up blocks, metadata, lists, etc. (500 LoC)

m Finding and allocating the right blocks (500 LoC)

m Updating heap structure on frees (500 LoC)

m + Some bug hiding in those 1500 LoC...
[dalud@angelshark:~/.../15213/s17/malloclabcheckpoint-handout] $ ./mdriver

Found benchmark throughput 13056 for cpu type Intel(R)Xeon(R)CPUE5520@2.27

hroughput targets mln 6528, max=11750, benchmark=13656

[dalud@angeléhark / /1521J/s17/malloc1abcheckp01nt handout] s B
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Debugging Strategies
m Use gdb!
m Write a heap checker!
o Checks heap invariants
o Call around major operations to make sure heap
invariants aren’t violated.
m Assertions (like 1221!):

© dbg assert(...)
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Common Errors

m Garbled Bytes
o This means you’re overwriting data in an allocated block.
m Overlapping Payloads
o This means you have unique blocks whose payloads
overlap in memory
m segfault!
o This means something is accessing invalid memory.
m For all of the above, step through with gdb to see where
things start to break!
o Note: to run assert statements, you’ll need to run
./mdriver-dbg rather than . /mdriver.
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Using gdb: Breakpoints and Watchpoints
m Breakpoints:

0 break coalesce block

O break mm.c:213

© break find fit if size == 24
m Watchpoints:

© w block = 0x8000010

o w *0x15213

o rwatch <thing> - stop on reading a memory location

o awatch <thing> - stop on any access to the location
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Using gdb: Inspecting Frames

(gdb) backtrace #0 find fit (...)
#1 mm malloc (...)

#2 0x0000000000403352 in eval mm valid (...) #3 run_tests (...)
#4 0x0000000000403c39 in main (...)

m backtrace - print call stack up until current function

m frame 1:switchto mm_malloc’s stack frame

o Can then inspect local variables.
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Writing a Heap Checker
m Heap checker: just a function that loops over your heap/data
structures and makes sure invariants are satisfied.
o Returns true if and only if heap is well-formed.
m Critical for debugging!
o Update when your implementation changes.
m Worry about correctness, not efficiency.
o But do avoid printing excessively.
m For Checkpoint, you will be graded on the quality of your heap

checker.
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Heap Invariants

m Heap invariants are things that should always be true about
the heap/your data structures between calls to
malloc/free.

m Can you come up with some invariants?
o Block Level: what should be true about individual blocks?
o List Level: what should be true about your free list(s)?
o Heap Level: what should be true about your blocks in

relation to the heap?
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Disclaimer:

Heap Invariants: Block Level Non-Exhaustive

m Header and footer store size/allocation information. Do they

match?
m Payload area is 16-byte aligned.
m Sizeis valid.
m No contiguous free blocks (unless you do deferred

coalescing).
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Disclaimer:

Heap Invariants: List Level Non-Exhaustive

m Assuming a doubly-linked explicit list:
o prev/next pointers are consistent
o No allocated blocks in free list
o No cycles!
m Segregated lists:
o Common bug: forgetting to move blocks between buckets
when their sizes change.
o Invariant: each segregated list contains only blocks in the

appropriate size class.
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Disclaimer:

Heap Invariants: Heap Level Non-Exhaustive

m All blocks are between heap boundaries.
m “Sentinel” Blocks store correct information.
o “Dummy” footer (at the start of the heap) and “dummy”
header (at the end of the heap) prevent accidental

coalescing.
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Strategy Guide: Suggested Roadmap
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Suggested Roadmap

m First: read the write-up!
o “Roadmap to Success” section

Start writing your heap checker!
Implement coalesce block () first.

Checkpoint
Implement an explicit free list.

Implement segregated lists!

el S A s S

Further optimizations (in this order)
o Footer Removal in allocated blocks

Final
o Decrease minimum block size

o Compress Headers (hard)
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Note: Usinggit
m As we have seen:
o This is a difficult lab.
o You will experiment with different optimizations, with
varying effects on performance and thus, your score.
m Make sure to regularly checkpoint your code with commits,
and push it to GitHub!
o Don’t want to lose your progress.
o |t will be helpful to include performance metrics in your

commit messages.
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Wrapping Up

m malloc due dates:
o Checkpoint: March 18th
o Final: March 25th
o Start early!
Written 6 due March 12th
m cachelab: Watch your inbox
for an email from your code

review TA!
m Have a good Spring Break :-)
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The End
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