
1

Boot Camp

Dave Eckhardt
de0u@andrew.cmu.edu

Roger Dannenberg
rbd@cs.cmu.edu

2

This Is a Hard Class

� CS doesn't have “capstone” classes, but similar...
� Traditional hazards

� 410 letter grade one lower than typical classes

� All other classes this semester: one grade lower

� Aim
� If you aim for a B you might not get one

� If you aim for a C you might not get one

� “I'll drop if I can't get an A”
� You must discuss this with your partner early

3

Good News

� Good news...it can be done!
� Spring 2008

� Two groups split due to drops
� One has finished, one is expected soon

� All other groups turned in working kernels
� Lots of people graduated

� Remainder of this lecture
� How to get from here to there

4

This is a Transformative Class

� Genuine achievement, available to you
� What is an OS, really?
� Mutual exclusion, synchronization, concurrency

� Deadlock

� Design, planning
� Serious competence in debugging!

5

Work Flow – You may be used to...

� Assignment handout � code outline

� Compilation implies correctness
� Graded by a script
� All done!

� Never use it again

� Delete it at end of semester

� Total opposite of real life

6

Work Flow – 410 Additions

� Design
� Divide into parts
� Manage your partner
� Merge
� Debug hard problems

7

Surprises

� “Code complete” means “I am far behind”
� Merge can take three days
� Then you start to find bugs (1-2 weeks)

� Code with “the right idea” will immediately crash
� If you're lucky!

� This is not a “basic idea is right” class
� You can't ship “basic ideas” to customers

� Understand all details–then you have the basic idea

8

On Debugging

As soon as we started programming, we
found to our surprise that it wasn't as easy to
get programs right as we had thought.
Debugging had to be discovered. I can
remember the exact instant when I realized
that a large part of my life from then on was
going to be spent in finding mistakes in my
own programs.
� Maurice Wilkes (1949)

9

Debugging

� Bugs aren't just last-minute glitches
� They are crucial learning experiences

� Learning a lot can take a lot of time

10

What Does A Bug Mean?

� “It tells me 'triple fault' – why??”
� Research: 20 minutes

� Think: 20 minutes

� Debug: 2 hours.

� ...three times.

� May need to write code to trap a bad bug
� Asserts or more-targeted debug module

� Then you will find your design was wrong!
� Don't be shocked – this is part of 410 / life

11

“All Done”?

� Finally, when you're done...
� You will use your code for the next assignment!

� We will read it (goal: every line)

12

Interlude

� What is source code “for”?
� What is done with it?

13

Interlude

� The purpose of code is for people to read
� By a reviewer / security auditor

� By your group

� By your manager

� By your successor

� By you six months later (6 hours later if no sleep)

� Oh, yeah, the compiler reads it too

14

Confront the Material

� We are doing printf() all the way down
� Subroutine linkage, how & why

� Stub routine, IDT entry, trap handler wrapper

� Output/input-echo interlock

� Logical cursor vs. physical cursor

� Video memory (what does scrolling mean?)

� Can't really gloss over anything

15

On Investing

� A week of coding can sometimes save
an hour of thought.
� Josh Bloch

16

Confront Debugging

� Real life: you will debug other people's code
� Any bug could be yours, partner's, ours, or Simics; you

need to find it.

� Can't debug using only printf()
� printf() changes your code
� printf() may be broken by whatever breaks your code

� Learn the Simics debugger

� Assertions, consistency checks

� Debugging code

17

Confront Debugging

� ½ hour of studying the debugger
� vs. 2 days of thrashing

� Papering over a problem
� Re-ordering object files to avoid crash

18

How to Have Trouble

� How to get an R
� Arrive unprepared (e.g., barely escape 113, 213)

� Do everything at the last minute

� Don't read the book or come to class

� Hide from course staff no matter what

� How to get a D
� Don't get the kernel project genuinely working

� (There are other ways, but this one is popular)

19

Warning About 15-213

� It's an important class
� We expect you to know

� Byte, word, register, 1<<2

� Thread, stack

� malloc(), free() (when & why)

� how to translate C � x86

� Trouble with 213?
� If you didn't get a B or an A, see me

� If the malloc() lab didn't go well, see me

20

Warning to Graduate Students

� This is an undergraduate class
� There will be “a diversity of grades”

� Getting “average grades on every assignment”
may well mean a C, not a B

� Working really hard and doing everything
somewhere between “ok” and “well” may mean a
B, not an A.
� B requires repeated solid performance
� A requires repeated excellence
� (“Everything pretty much worked” is C territory)

21

Doing Well – Embrace the
Experience

� Embrace the Unix development experience
� If you try to keep it at arm's length it will slow you

down

� Embrace the Simics debugger
� If you try to keep it at arm's length it will slow you

down

� Embrace source control
� If you keep it at arm's length ...

22

Doing Well – Invest in Good Code

� Mentally commit to writing good code
� Not just something kinda-ok

� You will depend on your code

� Anand Thakker (Fall 2003)
� Remind yourself that you love yourself

� So you should write good code for yourself

23

Doing Well – Start Early

� Starting a week late on a 2-week project will be
bad

� Not making “just one” checkpoint can be bad
� Missing two kernel-project checkpoints...

� ...may make passing impossible.

24

Doing Well – Read Partner's Code

� You will need to read everything your partner
wrote
� (and answer test questions about it)

� Set up a mechanism
� Daily meeting? Careful reading of merge logs?

� Do “one of each”
� Partner does N-1 stub routines, you should do the

hardest

25

Doing Well – Time for Design

� “Design” means you may need to think overnight

26

How to get an A

� Understand everything
� (consider 2-3 ways to do each thing, pick the best)

� Read all of your partner's code
� Work with your partner

� (not: work alone for 4-5 weeks out of 6, then (fail to)
merge)

27

How to get an A

� Write genuinely excellent code
� Do things which help you

� asserts, good variable names, source control

� Document before coding
� Actual 15-410 students do this!

� Simple, useful form: write several module .h's before
code for any of them

� Be “done” days early

